These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 4006318)
1. Sodium preference and excretion in spontaneously hypertensive rats on various diets. Wang H; Ikeda K; Kihara M; Nara Y; Horie R; Yamori Y Clin Exp Pharmacol Physiol; 1985; 12(2):139-44. PubMed ID: 4006318 [TBL] [Abstract][Full Text] [Related]
2. Dietary salt excess unmasks blunted aldosterone suppression and sodium retention in the stroke-prone phenotype of the spontaneously hypertensive rat. Volpe M; Rubattu S; Ganten D; Enea I; Russo R; Lembo G; Mirante A; Condorelli G; Trimarco B J Hypertens; 1993 Aug; 11(8):793-8. PubMed ID: 8228202 [TBL] [Abstract][Full Text] [Related]
3. Blood pressure, salt appetite and mortality of genetically hypertensive and normotensive rats maintained on high and low salt diets from weaning. Di Nicolantonio R; Silvapulle MJ Clin Exp Pharmacol Physiol; 1988 Oct; 15(10):741-51. PubMed ID: 3271179 [TBL] [Abstract][Full Text] [Related]
4. Effect of high calcium diet on magnesium, catecholamines, and blood pressure of stroke-prone spontaneously hypertensive rats. Luft FC; Ganten U; Meyer D; Steinberg H; Gless KH; Unger T; Ganten D Proc Soc Exp Biol Med; 1988 Apr; 187(4):474-81. PubMed ID: 3353396 [TBL] [Abstract][Full Text] [Related]
5. Renal responses to hypertonic saline infusion in salt-sensitive spontaneously hypertensive rats. Mozaffari MS; Roysommuti S; Shao ZH; Wyss JM Am J Med Sci; 1997 Dec; 314(6):370-6. PubMed ID: 9413341 [TBL] [Abstract][Full Text] [Related]
6. Therapeutic benefit of captopril in salt-loaded stroke-prone spontaneously hypertensive rats is independent of hypotensive effect. Stier CT; Chander P; Gutstein WH; Levine S; Itskovitz HD Am J Hypertens; 1991 Aug; 4(8):680-7. PubMed ID: 1930850 [TBL] [Abstract][Full Text] [Related]
7. [Studies on stroke-prone spontaneously hypertensive rats (SHRSP) fed a high-fat and high-cholesterol diet--effects of salt intake on serum lipoprotein and apolipoprotein metabolism]. Ogawa H; Nishikawa T; Fukushima S; Sasagawa S Nihon Eiseigaku Zasshi; 1989 Oct; 44(4):911-20. PubMed ID: 2637385 [TBL] [Abstract][Full Text] [Related]
8. Effects of dietary fish oil on Rb+ efflux from aorta of stroke prone spontaneously hypertensive rats. Smith JM; Paulson DJ; Labak S Am J Hypertens; 1992 Jul; 5(7):473-9. PubMed ID: 1637520 [TBL] [Abstract][Full Text] [Related]
9. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Nakano M; Hirooka Y; Matsukawa R; Ito K; Sunagawa K Hypertens Res; 2013 Mar; 36(3):277-84. PubMed ID: 23096235 [TBL] [Abstract][Full Text] [Related]
10. Reduced sodium excretory ability in young spontaneously hypertensive rats. Nagaoka A; Kakihana M; Shibota M; Fujiwara K; Shimakawa K Jpn J Pharmacol; 1982 Oct; 32(5):839-44. PubMed ID: 7176219 [TBL] [Abstract][Full Text] [Related]
11. Differential salt-sensitivity in the pathogenesis of renal damage in SHR and stroke prone SHR. Griffin KA; Churchill PC; Picken M; Webb RC; Kurtz TW; Bidani AK Am J Hypertens; 2001 Apr; 14(4 Pt 1):311-20. PubMed ID: 11336176 [TBL] [Abstract][Full Text] [Related]
12. Na+/K+-ATPase alpha isoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: effect of salt loading and lacidipine treatment. Quintas LE; Noël F; Wibo M Eur J Pharmacol; 2007 Jun; 565(1-3):151-7. PubMed ID: 17451677 [TBL] [Abstract][Full Text] [Related]
13. A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines. Rubattu S; Cotugno M; Bianchi F; Sironi L; Gelosa P; Stanzione R; Forte M; De Sanctis C; Madonna M; Marchitti S; Pignieri A; Sciarretta S; Volpe M J Hypertens; 2017 Sep; 35(9):1857-1871. PubMed ID: 28399045 [TBL] [Abstract][Full Text] [Related]
14. Salt loading decreases urinary excretion and increases intracellular accumulation of uromodulin in stroke-prone spontaneously hypertensive rats. Mary S; Boder P; Rossitto G; Graham L; Scott K; Flynn A; Kipgen D; Graham D; Delles C Clin Sci (Lond); 2021 Dec; 135(24):2749-2761. PubMed ID: 34870708 [TBL] [Abstract][Full Text] [Related]
15. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats. Nagaoka A; Kakihana M; Suno M; Hamajo K Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of alcohol metabolism in stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats fed normal or low levels of dietary protein. Yang SC; Ito M; Furukawa Y; Kimura S J Nutr Sci Vitaminol (Tokyo); 1994 Dec; 40(6):547-55. PubMed ID: 7751973 [TBL] [Abstract][Full Text] [Related]
17. Exacerbation of hypertension by high chloride, moderate sodium diet in the salt-sensitive spontaneously hypertensive rat. Wyss JM; Liumsiricharoen M; Sripairojthikoon W; Brown D; Gist R; Oparil S Hypertension; 1987 Jun; 9(6 Pt 2):III171-5. PubMed ID: 3596784 [TBL] [Abstract][Full Text] [Related]
18. Dietary-sodium-induced cardiac remodeling in spontaneously hypertensive rat versus Wistar-Kyoto rat. Leenen FH; Yuan B J Hypertens; 1998 Jun; 16(6):885-92. PubMed ID: 9663929 [TBL] [Abstract][Full Text] [Related]
20. Acute and chronic effects of synthetic atrial natriuretic factor on blood pressure and sodium excretion in spontaneously hypertensive rats. Kohzuki M; Abe K; Yasujima M; Kasai Y; Kanazawa M; Sato M; Hiwatari M; Omata K; Kudo K; Takeuchi K Tohoku J Exp Med; 1989 Mar; 157(3):279-88. PubMed ID: 2524909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]