These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4006440)

  • 1. Aberrant gene expression at the creatine kinase loci during Barbus hybrid development (Cypriniformes, Teleostei).
    Frankel JS; Wilson RV
    Comp Biochem Physiol B; 1985; 80(3):463-6. PubMed ID: 4006440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogenetic patterns of enzyme locus expression in Barbus hybrids (Cypriniformes, Teleostei).
    Frankel JS
    Comp Biochem Physiol B; 1985; 82(3):413-7. PubMed ID: 4085206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asynchronous expression of the alcohol and supernatant malate dehydrogenase loci during Barbus hybrid development (Cypriniformes, Teleostei).
    Frankel JS
    Comp Biochem Physiol B; 1985; 81(3):635-9. PubMed ID: 3161685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the spatial and temporal expression of supernatant malate dehydrogenase in Barbus hybrids (Cypriniformes, Teleostei).
    Frankel JS; Wilson RV
    Comp Biochem Physiol B; 1984; 78(1):179-82. PubMed ID: 6744821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of isozyme loci and their differential tissue expression. Creatine kinase as a model system.
    Fisher SE; Whitt GS
    J Mol Evol; 1978 Oct; 12(1):25-55. PubMed ID: 731710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autosomal differences between males and females in hybrid zones: a first report from Barbus barbus and Barbus meridionalis (Cyprinidae).
    Chenuil A; Crespin L; Pouyaud L; Berrebi P
    Heredity (Edinb); 2004 Aug; 93(2):128-34. PubMed ID: 15273701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid.
    Bürki E
    Biochem Genet; 1985 Feb; 23(1-2):73-88. PubMed ID: 3994660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant gene expression during the development of hybrid sunfishes (perciformes, teleostei).
    Whitt GS; Philipp DP; Childers WF
    Differentiation; 1977 Oct; 9(1-2):97-109. PubMed ID: 563355
    [No Abstract]   [Full Text] [Related]  

  • 9. Rare and asymmetrical hybridization of the endemic Barbus carpathicus with its widespread congener Barbus barbus.
    Lajbner Z; Slechtová V; Slechta V; Svátora M; Berrebi P; Kotlík P
    J Fish Biol; 2009 Feb; 74(2):418-36. PubMed ID: 20735568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes.
    Payne RM; Haas RC; Strauss AW
    Biochim Biophys Acta; 1991 Jul; 1089(3):352-61. PubMed ID: 1859839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal mapping of human creatine kinase (brain type) using human-rodent somatic cell hybrids.
    Chern CJ; Tan P; Park H
    Cytogenet Cell Genet; 1980; 27(4):232-7. PubMed ID: 6934066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining geometric morphometrics with molecular genetics to investigate a putative hybrid complex: a case study with barbels Barbus spp. (Teleostei: Cyprinidae).
    Geiger MF; Schreiner C; Delmastro GB; Herder F
    J Fish Biol; 2016 Mar; 88(3):1038-55. PubMed ID: 26805755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inheritance and linkage analysis of five enzyme loci in interspecific hybrids of toadlets, genus Bombina.
    Szymura JM; Farana I
    Biochem Genet; 1978 Apr; 16(3-4):307-19. PubMed ID: 678297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of gene activity by consecutive gene targeting of one creatine kinase M allele in mouse embryonic stem cells.
    van Deursen J; Lovell-Badge R; Oerlemans F; Schepens J; Wieringa B
    Nucleic Acids Res; 1991 May; 19(10):2637-43. PubMed ID: 2041741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of creatine kinase variation in some members of the family Acipenseridae].
    Kuz'min EV
    Genetika; 2008 Apr; 44(4):507-15. PubMed ID: 18666555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic basis of creatine kinase isozymes in skeletal muscle of salmonid fishes.
    Utter FM; Allendorf FW; May B
    Biochem Genet; 1979 Dec; 17(11-12):1079-91. PubMed ID: 540001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility.
    Jost CR; Van Der Zee CE; In 't Zandt HJ; Oerlemans F; Verheij M; Streijger F; Fransen J; Heerschap A; Cools AR; Wieringa B
    Eur J Neurosci; 2002 May; 15(10):1692-706. PubMed ID: 12059977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation.
    Shen W; Willis D; Zhang Y; Schlattner U; Wallimann T; Molloy GR
    Biochem J; 2002 Oct; 367(Pt 2):369-80. PubMed ID: 12093362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein.
    Hornemann T; Kempa S; Himmel M; Hayess K; Fürst DO; Wallimann T
    J Mol Biol; 2003 Sep; 332(4):877-87. PubMed ID: 12972258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system.
    Shen W; Spindler M; Higgins MA; Jin N; Gill RM; Bloem LJ; Ryan TP; Ingwall JS
    J Mol Cell Cardiol; 2005 Sep; 39(3):537-44. PubMed ID: 15978613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.