BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 4007089)

  • 21. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements.
    Krock RM; Moore T
    J Neurophysiol; 2016 Dec; 116(6):2882-2891. PubMed ID: 27683894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortical and subcortical contributions to saccade latency in the human brain.
    Neggers SF; Raemaekers MA; Lampmann EE; Postma A; Ramsey NF
    Eur J Neurosci; 2005 May; 21(10):2853-63. PubMed ID: 15926933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical control of reflexive visually-guided saccades.
    Pierrot-Deseilligny C; Rivaud S; Gaymard B; Agid Y
    Brain; 1991 Jun; 114 ( Pt 3)():1473-85. PubMed ID: 2065261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey.
    Schiller PH; Sandell JH; Maunsell JH
    J Neurophysiol; 1987 Apr; 57(4):1033-49. PubMed ID: 3585453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study.
    Fox PT; Fox JM; Raichle ME; Burde RM
    J Neurophysiol; 1985 Aug; 54(2):348-69. PubMed ID: 3875696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infant eye and head movements toward the side opposite the cue in the anti-saccade paradigm.
    Nakagawa A; Sukigara M
    Behav Brain Funct; 2007 Jan; 3():5. PubMed ID: 17229319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey.
    Schiller PH; Sandell JH
    Exp Brain Res; 1983; 49(3):381-92. PubMed ID: 6641836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategic control over saccadic eye movements: studies of the fixation offset effect.
    Machado L; Rafal RD
    Percept Psychophys; 2000 Aug; 62(6):1236-42. PubMed ID: 11019619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position.
    Blanke O; Seeck M
    Exp Brain Res; 2003 May; 150(2):174-83. PubMed ID: 12677314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for a supplementary eye field.
    Schlag J; Schlag-Rey M
    J Neurophysiol; 1987 Jan; 57(1):179-200. PubMed ID: 3559671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical control of vestibular-guided saccades in man.
    Israël I; Rivaud S; Gaymard B; Berthoz A; Pierrot-Deseilligny C
    Brain; 1995 Oct; 118 ( Pt 5)():1169-83. PubMed ID: 7496778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primate frontal eye fields. I. Single neurons discharging before saccades.
    Bruce CJ; Goldberg ME
    J Neurophysiol; 1985 Mar; 53(3):603-35. PubMed ID: 3981231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits.
    Abel LA; Walterfang M; Fietz M; Bowman EA; Velakoulis D
    Neurology; 2009 Mar; 72(12):1083-6. PubMed ID: 19307542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.