These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 4007089)

  • 41. Medial versus lateral frontal lobe contributions to voluntary saccade control as revealed by the study of patients with frontal lobe degeneration.
    Boxer AL; Garbutt S; Rankin KP; Hellmuth J; Neuhaus J; Miller BL; Lisberger SG
    J Neurosci; 2006 Jun; 26(23):6354-63. PubMed ID: 16763044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey.
    Scalaidhe SP; Rodman HR; Albright TD; Gross CG
    Behav Brain Res; 1997 Mar; 84(1-2):31-46. PubMed ID: 9079770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of the human dorsolateral prefrontal cortex in ocular motor behavior.
    Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D
    Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials.
    Yamamoto J; Ikeda A; Satow T; Matsuhashi M; Baba K; Yamane F; Miyamoto S; Mihara T; Hori T; Taki W; Hashimoto N; Shibasaki H
    Brain; 2004 Apr; 127(Pt 4):873-87. PubMed ID: 14960503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of reflexive saccades following hemispherectomy.
    Reuter-Lorenz PA; Herter TM; Guitton D
    J Cogn Neurosci; 2011 Jun; 23(6):1368-78. PubMed ID: 20617888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Directed attention after unilateral frontal excisions in humans.
    Koski LM; Paus T; Petrides M
    Neuropsychologia; 1998 Dec; 36(12):1363-71. PubMed ID: 9863690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissociable Roles of Dorsolateral Prefrontal Cortex and Frontal Eye Fields During Saccadic Eye Movements.
    Cameron IG; Riddle JM; D'Esposito M
    Front Hum Neurosci; 2015; 9():613. PubMed ID: 26635572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields.
    Schall JD
    J Neurophysiol; 1991 Aug; 66(2):559-79. PubMed ID: 1774586
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex.
    Funahashi S; Bruce CJ; Goldman-Rakic PS
    J Neurophysiol; 1991 Jun; 65(6):1464-83. PubMed ID: 1875255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cortical control of saccades.
    Gaymard B; Ploner CJ; Rivaud S; Vermersch AI; Pierrot-Deseilligny C
    Exp Brain Res; 1998 Nov; 123(1-2):159-63. PubMed ID: 9835405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of a re-centering bias in saccade regulation by superior colliculus neurons.
    Paré M; Munoz DP
    Exp Brain Res; 2001 Apr; 137(3-4):354-68. PubMed ID: 11355382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oculomotor control after hemidecortication: a single hemisphere encodes corollary discharges for bilateral saccades.
    Rath-Wilson K; Guitton D
    Cortex; 2015 Feb; 63():232-49. PubMed ID: 25299582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The initiation of smooth pursuit eye movements and saccades in normal subjects and in "express-saccade makers".
    Kimmig H; Biscaldi M; Mutter J; Doerr JP; Fischer B
    Exp Brain Res; 2002 Jun; 144(3):373-84. PubMed ID: 12021819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bilateral interactions in saccade programming. A saccade-latency study.
    Cavegn D
    Exp Brain Res; 1996 May; 109(2):312-32. PubMed ID: 8738379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of eye movement reflexes.
    Machado L; Rafal R
    Exp Brain Res; 2000 Nov; 135(1):73-80. PubMed ID: 11104129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field.
    Kunimatsu J; Tanaka M
    Eur J Neurosci; 2012 Nov; 36(9):3258-68. PubMed ID: 22845785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oculomotor control after hemidecortication: One hemisphere encodes normal ipsilateral oblique anti-saccades.
    Savina O; Guitton D
    Cortex; 2019 Feb; 111():127-133. PubMed ID: 30472384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deficits in eye movements following frontal eye-field and superior colliculus ablations.
    Schiller PH; True SD; Conway JL
    J Neurophysiol; 1980 Dec; 44(6):1175-89. PubMed ID: 6778974
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The human frontal oculomotor cortical areas contribute asymmetrically to motor planning in a gap saccade task.
    van Donkelaar P; Lin Y; Hewlett D
    PLoS One; 2009 Sep; 4(9):e7278. PubMed ID: 19789706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.