These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4007092)

  • 1. Quantitative analysis and two-dimensional reconstruction of the tonotopic organization of the auditory field L in the chick from 2-deoxyglucose data.
    Heil P; Scheich H
    Exp Brain Res; 1985; 58(3):532-43. PubMed ID: 4007092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose.
    Scheich H; Heil P; Langner G
    Eur J Neurosci; 1993 Jul; 5(7):898-914. PubMed ID: 8281301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two columnar systems in the auditory neostriatum of the chick: evidence from 2-deoxyglucose.
    Scheich H
    Exp Brain Res; 1983; 51(2):199-205. PubMed ID: 6194006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of unilateral and bilateral cochlea removal on 2-deoxyglucose patterns in the chick auditory system.
    Heil P; Scheich H
    J Comp Neurol; 1986 Oct; 252(3):279-301. PubMed ID: 3793978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique.
    Scheich H; Bonke BA; Bonke D; Langner G
    Cell Tissue Res; 1979; 204(1):17-27. PubMed ID: 527021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick.
    Heil P; Scheich H
    J Comp Neurol; 1992 Aug; 322(4):548-65. PubMed ID: 1401249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of mustached bat inferior colliculus: I. Representation of FM frequency bands important for target ranging revealed by 14C-2-deoxyglucose autoradiography and single unit mapping.
    O'Neill WE; Frisina RD; Gooler DM
    J Comp Neurol; 1989 Jun; 284(1):60-84. PubMed ID: 2754031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connections of the auditory forebrain in the pigeon (Columba livia).
    Wild JM; Karten HJ; Frost BJ
    J Comp Neurol; 1993 Nov; 337(1):32-62. PubMed ID: 8276991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [In utero demonstration of the functional activity of the auditory system of the fetus of guinea pigs by 14C 2-deoxyglucose autoradiography].
    Servière J; Horner KC; Granier-Deferre C
    C R Acad Sci III; 1986; 302(1):37-42. PubMed ID: 3082476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature extraction and tonotopic organization in the avian auditory forebrain.
    Müller CM; Leppelsack HJ
    Exp Brain Res; 1985; 59(3):587-99. PubMed ID: 2993015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tone-versus FM--induced patterns of excitation and suppression in the 14-C-2-deoxyglucose labeled auditory "cortex" of the guinea fowl.
    Scheich H; Bonke BA
    Exp Brain Res; 1981; 44(4):445-9. PubMed ID: 7308360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional frequency organization of the inferior colliculus of the cat: a 2-deoxyglucose study.
    Brown M; Webster WR; Martin RL
    Hear Res; 1997 Feb; 104(1-2):57-72. PubMed ID: 9119767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal shift of tonotopic organization in the chick auditory cortex analogue.
    Heil P; Scheich H
    Neuroreport; 1992 May; 3(5):381-4. PubMed ID: 1633271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional organization of the avian auditory cortex analogue. I. Topographic representation of isointensity bandwidth.
    Heil P; Scheich H
    Brain Res; 1991 Jan; 539(1):110-20. PubMed ID: 2015496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The frequency organization of the inferior colliculus of the guinea pig: A [14C]-2-deoxyglucose study.
    Martin RL; Webster WR; Servière J
    Hear Res; 1988 Jun; 33(3):245-55. PubMed ID: 3384759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonotopic organization in ventral nucleus of medial geniculate body in the cat.
    Imig TJ; Morel A
    J Neurophysiol; 1985 Jan; 53(1):309-40. PubMed ID: 3973661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferior colliculus of the house mouse. I. A quantitative study of tonotopic organization, frequency representation, and tone-threshold distribution.
    Stiebler I; Ehret G
    J Comp Neurol; 1985 Aug; 238(1):65-76. PubMed ID: 4044904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK
    Brain Res; 1988 Jun; 469(1-2):61-70. PubMed ID: 3401808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy of the auditory thalamocortical system of the guinea pig.
    Redies H; Brandner S; Creutzfeldt OD
    J Comp Neurol; 1989 Apr; 282(4):489-511. PubMed ID: 2723149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonotopic organization in the inferior colliculus of the rat demonstrated with the 2-deoxyglucose method.
    Huang CM; Fex J
    Exp Brain Res; 1986; 61(3):506-12. PubMed ID: 3956611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.