These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4007776)

  • 1. Effect of prolactin on short circuit current, potential and electrical resistance across isolated frog skin.
    Bliss DJ; Lote CJ
    Horm Metab Res; 1985 May; 17(5):234-6. PubMed ID: 4007776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata.
    Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M
    Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hyperpolarization of frog skin exposed to furosemide].
    Natochin IuV
    Biull Eksp Biol Med; 1975 Jun; 79(6):69-71. PubMed ID: 1083260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1984 Aug; 3(4):297-305. PubMed ID: 6094299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in bioelectrical parameters of isolated frog skin epithelium caused by monocrotophos.
    Czyzewska K; Pogorzelska H; Kontek M
    Acta Physiol Pol; 1982; 33(5-6):601-9. PubMed ID: 6985294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ethanol on the permeability of frog skin.
    Yorio T; Bentley PJ
    J Pharmacol Exp Ther; 1976 May; 197(2):340-51. PubMed ID: 1083905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolactin increases Na+ transport across adult bullfrog skin via stimulation of both ENaC and Na+/K+-pump.
    Takada M; Hokari S
    Gen Comp Endocrinol; 2007 May; 151(3):325-31. PubMed ID: 17367787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbaric oxygen effect on active Na+ transport across isolated toad skin.
    Park CC; Park JS; Goldinger JM; Duffey ME; Morin R; Hong SK
    Undersea Biomed Res; 1990 Jan; 17(1):23-32. PubMed ID: 2107615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Mercurascan on sodium transport in frog skin and bladder.
    Bures L; Heller J; Janácek K; Rybová R; Kleinová M; Kolc J; Málek P
    Physiol Bohemoslov; 1980; 29(6):569-75. PubMed ID: 6451885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Change in ion transport across the epithelium of the frog skin isolated from the body].
    Todorov D; Georgieva N
    Eksp Med Morfol; 1979; 18(1):40-5. PubMed ID: 436711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high hydrostatic pressure on sodium transport across toad skin.
    Hong SK; Duffey ME; Goldinger JM
    Undersea Biomed Res; 1984 Mar; 11(1):37-47. PubMed ID: 6330950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholera filtrates and ammonium ion. Inhibitory effect on short-circuit current of the isolated frog-skin.
    Lyng J; Spaun J
    Acta Pathol Microbiol Scand; 1967; 70(1):67-78. PubMed ID: 4860697
    [No Abstract]   [Full Text] [Related]  

  • 14. Proceedings: Measurement of drug effects on the electrical excitability of frog skin.
    O'Regan MG
    J Physiol; 1974 Jan; 236(1):1P-2P. PubMed ID: 4818495
    [No Abstract]   [Full Text] [Related]  

  • 15. Prolactin action on short circuit current in the developing tadpole skin: a comparison with ADH.
    Eddy LJ; Allen RF
    Gen Comp Endocrinol; 1979 Jul; 38(3):360-4. PubMed ID: 314921
    [No Abstract]   [Full Text] [Related]  

  • 16. Stimulation of the sodium transport across the frog skin by three N-terminally extended arginine-vasopressins.
    Ponec J; Bakos P; Lichardus B; Alexandrová M; Lammek B; Rekowski P; Kupryszewski G
    Gen Physiol Biophys; 1990 Aug; 9(4):403-9. PubMed ID: 2272488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The AC impedance of frog skin and its relation to active transport.
    Brown AC; Kastella KG
    Biophys J; 1965 Jul; 5(4):591-606. PubMed ID: 5861708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cAMP on porcine ciliary transepithelial short-circuit current, sodium transport, and chloride transport.
    Ni Y; Wu R; Xu W; Maecke H; Flammer J; Haefliger IO
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2065-74. PubMed ID: 16639017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic basis of short-circuit current in toad skin at high hydrostatic pressure.
    Goldinger JM; Duffey ME; Morin RA; Hong SK
    Undersea Biomed Res; 1986 Sep; 13(3):361-7. PubMed ID: 3095974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sanguinarine, a benzophenanthridine alkaloid, on frog skin potential difference and short circuit current.
    Nichols J; Straub KD; Abernathy S
    Biochim Biophys Acta; 1978 Aug; 511(2):251-8. PubMed ID: 307965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.