These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Human basophil recovery from secretion. A review emphasizing the distribution of Charcot-Leyden crystal protein in cells stained with the postfixation electron-dense tracer, cationized ferritin. Dvorak AM Histol Histopathol; 1996 Jul; 11(3):711-28. PubMed ID: 8839762 [TBL] [Abstract][Full Text] [Related]
10. Histamine-releasing activity (HRA). III. HRA induces human basophil histamine release by provoking noncytotoxic granule exocytosis. Dvorak AM; Lett-Brown MA; Thueson DO; Pyne K; Raghuprasad PK; Galli SJ; Grant JA Clin Immunol Immunopathol; 1984 Aug; 32(2):142-50. PubMed ID: 6203674 [TBL] [Abstract][Full Text] [Related]
11. Localization of Charcot-Leyden crystal protein in individual morphological phenotypes of human basophils stimulated by f-Met peptide. Dvorak AM; MacGlashan DW; Warner JA; Letourneau L; Morgan ES; Lichtenstein LM; Ackerman SJ Clin Exp Allergy; 1997 Apr; 27(4):452-74. PubMed ID: 9146940 [TBL] [Abstract][Full Text] [Related]
12. Pinocytosis in mouse L-fibroblasts: ultrastructural evidence for a direct membrane shuttle between the plasma membrane and the lysosomal compartment. Van Deurs B; Nilausen K J Cell Biol; 1982 Aug; 94(2):279-86. PubMed ID: 7107699 [TBL] [Abstract][Full Text] [Related]
13. An ultrastructural analysis of tumor-promoting phorbol diester-induced degranulation of human basophils. Dvorak AM; Warner JA; Morgan E; Kissell-Rainville S; Lichtenstein LM; MacGlashan DW Am J Pathol; 1992 Dec; 141(6):1309-22. PubMed ID: 1466396 [TBL] [Abstract][Full Text] [Related]
14. F-met peptide-induced degranulation of human basophils. Dvorak AM; Warner JA; Kissell S; Lichtenstein LM; MacGlashan DW Lab Invest; 1991 Feb; 64(2):234-53. PubMed ID: 1705302 [TBL] [Abstract][Full Text] [Related]
15. The membrane fusion events in degranulating guinea pig eosinophils. Lindau M; NĂ¼sse O; Bennett J; Cromwell O J Cell Sci; 1993 Jan; 104 ( Pt 1)():203-10. PubMed ID: 8449998 [TBL] [Abstract][Full Text] [Related]
16. Comparative electron microscopy of basophils and mast cells, in vivo and in vitro. Eguchi M Electron Microsc Rev; 1991; 4(2):293-318. PubMed ID: 1932585 [TBL] [Abstract][Full Text] [Related]
17. The uptake of cationized ferritin by guinea-pig gall bladder in vitro. Elhamady MS; Milne G; Hopwood D; Ross PE; Bouchier IA Histochem J; 1984 Mar; 16(3):275-85. PubMed ID: 6698807 [TBL] [Abstract][Full Text] [Related]
18. Guinea pig basophil morphology in vitro. I. Ultrastructure of uropod-bearing (motile) basophils and modulation of motile structures by serum and substrate effects. Galli SJ; Dvorak AM; Hammond ME; Morgan E; Galli AS; Dvorak HF J Immunol; 1981 Mar; 126(3):1066-74. PubMed ID: 7462627 [No Abstract] [Full Text] [Related]
19. Membrane interactions between secretion granules and plasmalemma in three exocrine glands. Tanaka Y; De Camilli P; Meldolesi J J Cell Biol; 1980 Feb; 84(2):438-53. PubMed ID: 7380885 [TBL] [Abstract][Full Text] [Related]
20. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Monck JR; Alvarez de Toledo G; Fernandez JM Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7804-8. PubMed ID: 2235997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]