These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4008983)

  • 1. Chemical and biologic characterization of a lipopolysaccharide extracted from the Lyme disease spirochete (Borrelia burgdorferi).
    Beck G; Habicht GS; Benach JL; Coleman JL
    J Infect Dis; 1985 Jul; 152(1):108-17. PubMed ID: 4008983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Borrelia burgdorferi lipopolysaccharide and its role in the pathogenesis of Lyme disease.
    Habicht GS; Beck G; Benach JL; Coleman JL
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Dec; 263(1-2):137-41. PubMed ID: 3577475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi.
    Takayama K; Rothenberg RJ; Barbour AG
    Infect Immun; 1987 Sep; 55(9):2311-3. PubMed ID: 3623705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endotoxin-like activity associated with Lyme disease Borrelia.
    Fumarola D; Munno I; Marcuccio C; Miragliotta G
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Dec; 263(1-2):142-5. PubMed ID: 3577476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoproteins of Borrelia burgdorferi and Treponema pallidum activate cachectin/tumor necrosis factor synthesis. Analysis using a CAT reporter construct.
    Radolf JD; Norgard MV; Brandt ME; Isaacs RD; Thompson PA; Beutler B
    J Immunol; 1991 Sep; 147(6):1968-74. PubMed ID: 1890308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation.
    Schwan TG; Burgdorfer W; Garon CF
    Infect Immun; 1988 Aug; 56(8):1831-6. PubMed ID: 3397175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of Interleukin 10 by Borrelia burgdorferi Is Regulated by the Action of CD14-Dependent p38 Mitogen-Activated Protein Kinase and cAMP-Mediated Chromatin Remodeling.
    Sahay B; Bashant K; Nelson NLJ; Patsey RL; Gadila SK; Boohaker R; Verma A; Strle K; Sellati TJ
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29311239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological activities of endotoxins from Yersinia enterocolitica.
    Kanamori M
    Jpn J Microbiol; 1976 Aug; 20(4):273-80. PubMed ID: 978837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endotoxicity associated with the Lyme disease Borrelia: recent findings.
    Fumarola D; Munno I; Marcuccio C; Miragliotta G
    Microbiologica; 1986 Apr; 9(2):249-52. PubMed ID: 3713546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice.
    Chan K; Alter L; Barthold SW; Parveen N
    PLoS One; 2015; 10(6):e0129532. PubMed ID: 26069970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for interleukin-1 in the pathogenesis of Lyme disease.
    Beck G; Habicht GS; Benach JL; Coleman JL; Lysik RM; O'Brien RF
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Dec; 263(1-2):133-6. PubMed ID: 3495083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothetical Protein BB0569 Is Essential for Chemotaxis of the Lyme Disease Spirochete Borrelia burgdorferi.
    Zhang K; Liu J; Charon NW; Li C
    J Bacteriol; 2015 Dec; 198(4):664-72. PubMed ID: 26644432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, preliminary chemical characterization, and biological activity of Borrelia burgdorferi peptidoglycan.
    Beck G; Benach JL; Habicht GS
    Biochem Biophys Res Commun; 1990 Feb; 167(1):89-95. PubMed ID: 2310405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Borrelia burgdorferi colonizes the mammary glands of lactating C3H mice: does not cause congenital Lyme disease.
    Velásquez CV; Moustafa MAM; Rocha SC; Parveen N
    Microbes Infect; 2024; 26(1-2):105241. PubMed ID: 38380602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recruitment of macrophages and polymorphonuclear leukocytes in Lyme carditis.
    Montgomery RR; Booth CJ; Wang X; Blaho VA; Malawista SE; Brown CR
    Infect Immun; 2007 Feb; 75(2):613-20. PubMed ID: 17101663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and immunological characterization of a major low-molecular-weight lipoprotein from Borrelia burgdorferi.
    Katona LI; Beck G; Habicht GS
    Infect Immun; 1992 Dec; 60(12):4995-5003. PubMed ID: 1452330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonspecific proliferative responses of murine lymphocytes to Borrelia burgdorferi antigens.
    de Souza MS; Fikrig E; Smith AL; Flavell RA; Barthold SW
    J Infect Dis; 1992 Mar; 165(3):471-8. PubMed ID: 1531672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Borrelia burgdorferi Glycosaminoglycan Binding Protein Bgp in the B31 Strain Is Not Essential for Infectivity despite Facilitating Adherence and Tissue Colonization.
    Schlachter S; Seshu J; Lin T; Norris S; Parveen N
    Infect Immun; 2018 Feb; 86(2):. PubMed ID: 29158428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing the antigenic reactivity of Borrelia burgdorferi, the Lyme disease spirochete.
    Schwan TG; Simpson WJ
    Scand J Infect Dis Suppl; 1991; 77():94-101. PubMed ID: 1947819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells.
    Jutras BL; Scott M; Parry B; Biboy J; Gray J; Vollmer W; Jacobs-Wagner C
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9162-70. PubMed ID: 27506799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.