BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4009201)

  • 1. Neurologic deficit, blood flow and biochemical sequelae of reversible focal cerebral ischemia in cats.
    Paschen W; Sato M; Pawlik G; Umbach C; Heiss WD
    J Neurol Sci; 1985 May; 68(2-3):119-34. PubMed ID: 4009201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurologic deficit and cerebral ATP depletion after temporary focal ischemia in cats.
    Sato M; Paschen W; Pawlik G; Heiss WD
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):173-7. PubMed ID: 6725429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism.
    Paschen W; Oláh L; Mies G
    J Neurochem; 2000 Oct; 75(4):1675-80. PubMed ID: 10987849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH fluorescence and regional energy metabolites during focal ischemia and reperfusion of rat brain.
    Welsh FA; Marcy VR; Sims RE
    J Cereb Blood Flow Metab; 1991 May; 11(3):459-65. PubMed ID: 2016354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pial arterial pressure in cats following middle cerebral artery occlusion. II. Relationship to regional disturbance of energy metabolism.
    Paschen W; Shima T; Hossmann KA
    Stroke; 1984; 15(4):686-90. PubMed ID: 6464061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional assessment of energy-producing metabolism following prolonged complete ischemia of cat brain.
    Paschen W; Hossmann KA; van den Kerckhoff W
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):321-9. PubMed ID: 6874741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Threshold relationship between cerebral blood flow, glucose utilization, and energy metabolites during development of stroke in gerbils.
    Paschen W; Mies G; Hossmann KA
    Exp Neurol; 1992 Sep; 117(3):325-33. PubMed ID: 1397169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral glucose metabolism during the recovery period after ischemia--its relationship to NADH-fluorescence, blood flow, EcoG and histology.
    Tanaka K; Dora E; Greenberg JH; Reivich M
    Stroke; 1986; 17(5):994-1004. PubMed ID: 3764974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is intracellular brain pH a dependent factor in NOS inhibition during focal cerebral ischemia?
    Anderson RE; Meyer FB
    Brain Res; 2000 Feb; 856(1-2):220-6. PubMed ID: 10677629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between cerebral blood flow and ATP content following tourniquet-induced ischemia in cat brain.
    Marcy VR; Welsh FA
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):362-7. PubMed ID: 6470054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH, and infarct size.
    Wagner KR; Kleinholz M; de Courten-Myers GM; Myers RE
    J Cereb Blood Flow Metab; 1992 Mar; 12(2):213-22. PubMed ID: 1548294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional changes in metabolism in hypoxia-ischemia.
    Welsh FA; O'Connor MJ; Rieder W; Marcy VR
    Adv Exp Med Biol; 1977; 78():275-86. PubMed ID: 197809
    [No Abstract]   [Full Text] [Related]  

  • 13. Brain pHi, cerebral blood flow, and NADH fluorescence during severe incomplete global ischemia in rabbits.
    Tomlinson FH; Anderson RE; Meyer FB
    Stroke; 1993 Mar; 24(3):435-43. PubMed ID: 8446980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical changes during graded brain ischemia in gerbils. Part 2. Regional evaluation of cerebral blood flow and brain metabolites.
    Paschen W; Djuricic BM; Bosma HJ; Hossmann KA
    J Neurol Sci; 1983 Jan; 58(1):37-44. PubMed ID: 6842258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of brain infarction after transient focal cerebral ischemia in mice.
    Hata R; Maeda K; Hermann D; Mies G; Hossmann KA
    J Cereb Blood Flow Metab; 2000 Jun; 20(6):937-46. PubMed ID: 10894177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation of apparent diffusion coefficient changes and metabolic disturbances after 1 hour of focal cerebral ischemia and at different reperfusion phases in rats.
    Olah L; Wecker S; Hoehn M
    J Cereb Blood Flow Metab; 2001 Apr; 21(4):430-9. PubMed ID: 11323529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase inhibition by L-NAME prevents brain acidosis during focal cerebral ischemia in rabbits.
    Regli L; Held MC; Anderson RE; Meyer FB
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):988-95. PubMed ID: 8784244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of intermittent reperfusion on brain pHi, rCBF, and NADH during rabbit focal cerebral ischemia.
    Regli L; Anderson RE; Meyer FB
    Stroke; 1995 Aug; 26(8):1444-51; discussion 1451-2. PubMed ID: 7631351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of acute focal cerebral ischemia and recirculation with d-propranolol.
    Latchaw JP; Little JR; Slugg RM; Lesser RP; Stowe N
    Neurosurgery; 1985 Jan; 16(1):18-22. PubMed ID: 3974810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infarct tolerance against temporary focal ischemia following spreading depression in rat brain.
    Yanamoto H; Hashimoto N; Nagata I; Kikuchi H
    Brain Res; 1998 Feb; 784(1-2):239-49. PubMed ID: 9518633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.