These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4009226)

  • 21. The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys.
    Gould HJ; Cusick CG; Pons TP; Kaas JH
    J Comp Neurol; 1986 May; 247(3):297-325. PubMed ID: 3722441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey.
    Alexander GE; Crutcher MD
    J Neurophysiol; 1990 Jul; 64(1):164-78. PubMed ID: 2388063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single cell studies of the primate putamen. I. Functional organization.
    Crutcher MD; DeLong MR
    Exp Brain Res; 1984; 53(2):233-43. PubMed ID: 6705861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation.
    Noda H; Fujikado T
    J Neurophysiol; 1987 Aug; 58(2):359-78. PubMed ID: 3655873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements.
    Bruce CJ; Goldberg ME; Bushnell MC; Stanton GB
    J Neurophysiol; 1985 Sep; 54(3):714-34. PubMed ID: 4045546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Projections to the neostriatum from the cat precruciate cortex. Anatomy and physiology.
    Garcia-Rill E; Nieto A; Adinolfi A; Hull CD; Buchwald NA
    Brain Res; 1979 Jul; 170(3):393-407. PubMed ID: 466420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstimulation in visual area MT: effects of varying pulse amplitude and frequency.
    Murasugi CM; Salzman CD; Newsome WT
    J Neurosci; 1993 Apr; 13(4):1719-29. PubMed ID: 8463847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.
    Karl JM; Sacrey LA; McDonald RJ; Whishaw IQ
    Brain Res Bull; 2008 Sep; 77(1):42-8. PubMed ID: 18639744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of local cooling of the neocortex on motor responses evoked by intracortical microstimulation in the rabbit].
    Lenkov DN; Golubev AV; Mochenkov BP
    Fiziol Zh SSSR Im I M Sechenova; 1985 Nov; 71(11):1321-8. PubMed ID: 4085647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional properties of neurons in the primate tongue primary motor cortex during swallowing.
    Martin RE; Murray GM; Kemppainen P; Masuda Y; Sessle BJ
    J Neurophysiol; 1997 Sep; 78(3):1516-30. PubMed ID: 9310440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex.
    Kermadi I; Boussaoud D
    Neuroreport; 1995 May; 6(8):1177-81. PubMed ID: 7662902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behaviorally contingent property of movement-related activity of the primate putamen.
    Kimura M
    J Neurophysiol; 1990 Jun; 63(6):1277-96. PubMed ID: 2358877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex.
    Rho MJ; Lavoie S; Drew T
    J Neurophysiol; 1999 May; 81(5):2297-315. PubMed ID: 10322067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motor representation in the rostral portion of the cat corpus callosum as evidenced by microstimulation.
    Spidalieri G; Guandalini P
    Exp Brain Res; 1983; 53(1):59-70. PubMed ID: 6673998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys.
    Freedman EG; Stanford TR; Sparks DL
    J Neurophysiol; 1996 Aug; 76(2):927-52. PubMed ID: 8871209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements.
    Donoghue JP; Sanes JN; Hatsopoulos NG; Gaál G
    J Neurophysiol; 1998 Jan; 79(1):159-73. PubMed ID: 9425187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Input-output relationships of the primary face motor cortex in the monkey (Macaca fascicularis).
    Huang CS; Hiraba H; Sessle BJ
    J Neurophysiol; 1989 Feb; 61(2):350-62. PubMed ID: 2918359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional properties of single neurons in the face primary motor cortex of the primate. III. Relations with different directions of trained tongue protrusion.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):775-85. PubMed ID: 1578254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional organization within the medullary reticular formation of intact unanesthetized cat. I. Movements evoked by microstimulation.
    Drew T; Rossignol S
    J Neurophysiol; 1990 Sep; 64(3):767-81. PubMed ID: 2230923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using Single Pulse Microstimulation.
    Hao Y; Riehle A; Brochier TG
    Front Neural Circuits; 2016; 10():104. PubMed ID: 28018182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.