These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 4009227)

  • 21. Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements.
    Jaeger D; Gilman S; Aldridge JW
    Brain Res; 1995 Oct; 694(1-2):111-27. PubMed ID: 8974634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys.
    Yeterian EH; Pandya DN
    J Comp Neurol; 1991 Oct; 312(1):43-67. PubMed ID: 1744243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys.
    Yoshida S; Nambu A; Jinnai K
    Brain Res; 1993 May; 611(1):170-4. PubMed ID: 8518946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of neurons in the caudate and putamen during a visuomotor task.
    Romero MC; Bermudez MA; Vicente AF; Perez R; Gonzalez F
    Neuroreport; 2008 Jul; 19(11):1141-5. PubMed ID: 18596616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study.
    Leh SE; Ptito A; Chakravarty MM; Strafella AP
    Neurosci Lett; 2007 May; 419(2):113-8. PubMed ID: 17485168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A region in the dorsolateral striatum of the rat exhibiting single-unit correlations with specific locomotor limb movements.
    West MO; Carelli RM; Pomerantz M; Cohen SM; Gardner JP; Chapin JK; Woodward DJ
    J Neurophysiol; 1990 Oct; 64(4):1233-46. PubMed ID: 2258744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations.
    Flaherty AW; Graybiel AM
    J Neurophysiol; 1991 Oct; 66(4):1249-63. PubMed ID: 1722244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action.
    Yamada H; Matsumoto N; Kimura M
    J Neurosci; 2004 Apr; 24(14):3500-10. PubMed ID: 15071097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The response of striatal cells upon stimulation of the dorsal and median raphe nuclei.
    Olpe HR; Koella WP
    Brain Res; 1977 Feb; 122(2):357-60. PubMed ID: 837235
    [No Abstract]   [Full Text] [Related]  

  • 30. Behaviorally contingent property of movement-related activity of the primate putamen.
    Kimura M
    J Neurophysiol; 1990 Jun; 63(6):1277-96. PubMed ID: 2358877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat.
    West MO
    J Neurosci; 1998 Nov; 18(21):9055-68. PubMed ID: 9787009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The primate subthalamic nucleus. I. Functional properties in intact animals.
    Wichmann T; Bergman H; DeLong MR
    J Neurophysiol; 1994 Aug; 72(2):494-506. PubMed ID: 7983514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the predicted time of stimuli eliciting movements on responses of tonically active neurons in the monkey striatum.
    Sardo P; Ravel S; Legallet E; Apicella P
    Eur J Neurosci; 2000 May; 12(5):1801-16. PubMed ID: 10792457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields.
    Stanton GB; Goldberg ME; Bruce CJ
    J Comp Neurol; 1988 May; 271(4):473-92. PubMed ID: 2454970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encoding by synchronization in the primate striatum.
    Adler A; Finkes I; Katabi S; Prut Y; Bergman H
    J Neurosci; 2013 Mar; 33(11):4854-66. PubMed ID: 23486956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex.
    Miyachi S; Lu X; Imanishi M; Sawada K; Nambu A; Takada M
    Neurosci Res; 2006 Nov; 56(3):300-8. PubMed ID: 16973231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections.
    Huang CS; Sirisko MA; Hiraba H; Murray GM; Sessle BJ
    J Neurophysiol; 1988 Mar; 59(3):796-818. PubMed ID: 2835448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):747-58. PubMed ID: 1578252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corticostriatal connections of extrastriate visual areas in rhesus monkeys.
    Yeterian EH; Pandya DN
    J Comp Neurol; 1995 Feb; 352(3):436-57. PubMed ID: 7706560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into Island and Matrix cellular compartments.
    Goldman-Rakic PS
    J Comp Neurol; 1982 Mar; 205(4):398-413. PubMed ID: 7096628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.