These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 400949)

  • 1. Evolution of ribosomal RNA.
    Ishikawa H
    Comp Biochem Physiol B; 1977; 58(1):1-7. PubMed ID: 400949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What causes the aphid 28S rRNA to lack the hidden break?
    Ogino K; Eda-Fujiwara H; Fujiwara H; Ishikawa H
    J Mol Evol; 1990 Jun; 30(6):509-13. PubMed ID: 2115929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies.
    Fujiwara H; Ishikawa H
    Nucleic Acids Res; 1986 Aug; 14(16):6393-401. PubMed ID: 3018670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insects' RNA Profiling Reveals Absence of "Hidden Break" in 28S Ribosomal RNA Molecule of Onion Thrips, Thrips tabaci.
    Macharia RW; Ombura FL; Aroko EO
    J Nucleic Acids; 2015; 2015():965294. PubMed ID: 25767721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers.
    Natsidis P; Schiffer PH; Salvador-Martínez I; Telford MJ
    Sci Rep; 2019 Dec; 9(1):19477. PubMed ID: 31863008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size heterogeneity of ribosomal RNA in eukaryote evolution--2. rRNA molecular weights in species containing discontinuous large ribosomal subunit RNA.
    Cammarano P; Londei P; Mazzei F; Biagini R
    Comp Biochem Physiol B; 1982; 73(2):435-49. PubMed ID: 7172636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.
    Hancock JM; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):377-91. PubMed ID: 3405077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synthesis of 5S RNA and its relationship to 18S and 28S ribosomal RNA in the bobbed mutants of Drosophila melanogaster.
    Mohan J
    Genetics; 1975 Dec; 81(4):723-38. PubMed ID: 814039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium ion induced proton release as a probe for the polyelectrolytic structure of ribosomal RNAs and subunits.
    Horie K; Hagihara H; Wada A; Fukutome H
    J Biochem; 1983 Oct; 94(4):1289-99. PubMed ID: 6361011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
    Hancock JM; Tautz D; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary and secondary structures of Tetrahymena and aphid 5.8S rRNAs: structural features of 5.8S rRNA which interacts with the 28S rRNA containing the hidden break.
    Fujiwara H; Ishikawa H
    Nucleic Acids Res; 1982 Sep; 10(17):5173-82. PubMed ID: 6815618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arthropod ribosomes. Integrity of ribosomal ribonucleic acids from aphids and water fleas.
    Ishikawa H
    Biochim Biophys Acta; 1976 Jul; 435(3):258-68. PubMed ID: 949496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of protein deficiency on the biosynthesis and degradation of ribosomal RNA in rat liver.
    Kawada T; Fujisawa T; Imai K; Ogata K
    J Biochem; 1977 Jan; 81(1):143-52. PubMed ID: 845133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature.
    Bonen L; Cunningham RS; Gray MW; Doolittle WF
    Nucleic Acids Res; 1977 Mar; 4(3):663-71. PubMed ID: 866186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on ribosomal ribonucleic acid from yeast. III. Secondary structure of 18 and 26S yeast ribosomal RNA's and their complex: circular dichroism and infrared analyses.
    Yanagi K; Katsura T; Iso K
    J Biochem; 1975 Sep; 78(3):599-604. PubMed ID: 773924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3'-Terminal sequence of wheat mitochondrial 18S ribosomal RNA: further evidence of a eubacterial evolutionary origin.
    Schnare MN; Gray MW
    Nucleic Acids Res; 1982 Jul; 10(13):3921-32. PubMed ID: 7050913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intranuclear maturation pathways of rat liver ribosomal ribonucleic acids.
    Dabeva MD; Dudov KP; Hadjiolov AA; Emanuilov I; Todorov BN
    Biochem J; 1976 Dec; 160(3):495-503. PubMed ID: 1016236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete sequences of the rRNA genes of Drosophila melanogaster.
    Tautz D; Hancock JM; Webb DA; Tautz C; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):366-76. PubMed ID: 3136294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications.
    Clark CG; Tague BW; Ware VC; Gerbi SA
    Nucleic Acids Res; 1984 Aug; 12(15):6197-220. PubMed ID: 6147812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene.
    Chan YL; Olvera J; Wool IG
    Nucleic Acids Res; 1983 Nov; 11(22):7819-31. PubMed ID: 6316273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.