These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 4010486)
1. Analysis of deuterium labeled blood lipids by chemical ionization mass spectrometry. Rohwedder WK; Emken EA; Wolf DJ Lipids; 1985 May; 20(5):303-11. PubMed ID: 4010486 [TBL] [Abstract][Full Text] [Related]
2. Measurement of the metabolic interconversion of deuterium-labeled fatty acids by gas chromatography/mass spectrometry. Rohwedder WK; Duval SM; Wolf DJ; Emken EA Lipids; 1990 Jul; 25(7):401-5. PubMed ID: 2395419 [TBL] [Abstract][Full Text] [Related]
3. Mass spectrometric analysis of deuterium dual labeled blood lipids. Rohwedder WK; Kwolek WF; Wolf DJ; Everhart WL Biomed Mass Spectrom; 1979 Feb; 6(2):67-71. PubMed ID: 420912 [TBL] [Abstract][Full Text] [Related]
4. Analysis of fatty acid methyl esters by a gas--liquid chromatography--chemical ionization mass spectrometry computer system. Murata T J Lipid Res; 1978 Feb; 19(2):166-71. PubMed ID: 632679 [TBL] [Abstract][Full Text] [Related]
5. Metabolism in humans of cis-12,trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids. Emken EA; Rohwedder WK; Adlof RO; Rakoff H; Gulley RM Lipids; 1987 Jul; 22(7):495-504. PubMed ID: 3306237 [TBL] [Abstract][Full Text] [Related]
6. Absorption and distribution of deuterium-labeled trans- and cis-11-octadecenoic acid in human plasma and lipoprotein lipids. Emken EA; Rohwedder WK; Adlof RO; DeJarlais WJ; Gulley RM Lipids; 1986 Sep; 21(9):589-95. PubMed ID: 3762332 [TBL] [Abstract][Full Text] [Related]
7. Validation of a new procedure to determine plasma fatty acid concentration and isotopic enrichment. Patterson BW; Zhao G; Elias N; Hachey DL; Klein S J Lipid Res; 1999 Nov; 40(11):2118-24. PubMed ID: 10553015 [TBL] [Abstract][Full Text] [Related]
8. Identification of chlorinated fatty acids in fish by gas chromatography/mass spectrometry with negative ion chemical ionization of pentafluorobenzyl esters. Zhuang W; McKague AB; Reeve DW; Carey JH J Mass Spectrom; 2004 Jan; 39(1):51-60. PubMed ID: 14760613 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous analysis of low plasma levels of deuterium-labeled saturated and unsaturated fatty acids as t-butyldimethylsilyl esters. Parsons H; Emken EM; Marai L; Kuksis A Lipids; 1986 Mar; 21(3):247-51. PubMed ID: 3702617 [TBL] [Abstract][Full Text] [Related]
10. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food. Thurnhofer S; Vetter W J Agric Food Chem; 2006 May; 54(9):3209-14. PubMed ID: 16637674 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of deuterium-labeled trans- and cis-13-octadecenoic acids in human plasma lipids. Emken EA; Adlof RO; Rohwedder WK; Gulley RM J Lipid Res; 1983 Jan; 24(1):34-46. PubMed ID: 6833880 [TBL] [Abstract][Full Text] [Related]
12. Measurements of fatty acid synthesis by incorporation of deuterium from deuterated water. Patton GM; Lowenstein JM Biochemistry; 1979 Jul; 18(14):3186-8. PubMed ID: 465462 [TBL] [Abstract][Full Text] [Related]
13. A technique for the in vivo study of multiple stable isotope-labeled essential fatty acids. Lin Y; Salem N Prostaglandins Leukot Essent Fatty Acids; 2002; 67(2-3):141-6. PubMed ID: 12324233 [TBL] [Abstract][Full Text] [Related]
14. Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry. Bicalho B; David F; Rumplel K; Kindt E; Sandra P J Chromatogr A; 2008 Nov; 1211(1-2):120-8. PubMed ID: 18842268 [TBL] [Abstract][Full Text] [Related]
15. Minor compounds and potential interferents in gas chromatographic analyses of human serum fatty acids. Lin CC; Sengee A; Mjøs SA J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Feb; 1138():121963. PubMed ID: 31931328 [TBL] [Abstract][Full Text] [Related]
16. Determination of red blood cell fatty acid profiles: Rapid and high-confident analysis by chemical ionization-gas chromatography-tandem mass spectrometry. Schober Y; Wahl HG; Renz H; Nockher WA J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1040():1-7. PubMed ID: 27880928 [TBL] [Abstract][Full Text] [Related]
17. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF. Henry P; Owopetu O; Adisa D; Nguyen T; Anthony K; Ijoni-Animadu D; Jamadar S; Abdel-Rahman F; Saleh MA J Environ Sci Health B; 2016 Aug; 51(8):546-52. PubMed ID: 27166662 [TBL] [Abstract][Full Text] [Related]
18. A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. Thurnhofer S; Vetter W J Agric Food Chem; 2005 Nov; 53(23):8896-903. PubMed ID: 16277380 [TBL] [Abstract][Full Text] [Related]
19. Mass spectra of methyl esters of brominated fatty acids and their presence in soft drinks and cocktail syrups. Bendig P; Maier L; Lehnert K; Knapp H; Vetter W Rapid Commun Mass Spectrom; 2013 May; 27(9):1083-9. PubMed ID: 23592212 [TBL] [Abstract][Full Text] [Related]
20. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. Hauff S; Vetter W J Chromatogr A; 2010 Dec; 1217(52):8270-8. PubMed ID: 21087771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]