These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4010688)

  • 1. Repair of indirectly induced DNA damage in human skin fibroblasts treated with N-hydroxy-2-naphthylamine.
    Kaneko M; Nagata C; Kodama M
    Mutat Res; 1985 Jul; 143(3):103-8. PubMed ID: 4010688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of thymine glycols in DNA by N-hydroxy-2-naphthylamine as detected by a monoclonal antibody.
    Kaneko M; Leadon SA
    Cancer Res; 1986 Jan; 46(1):71-5. PubMed ID: 3940211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of DNA lesions in cultured human fibroblasts induced by active oxygen species generated from a hydroxylated metabolite of 2-naphthylamine.
    Kaneko M; Nakayama T; Kodama M; Nagata C
    Gan; 1984 Apr; 75(4):349-54. PubMed ID: 6329886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction and repair of psoralen cross-links in DNA of normal human and xeroderma pigmentosum fibroblasts.
    Bredberg A; Lambert B; Söderhäll S
    Mutat Res; 1982 Mar; 93(1):221-34. PubMed ID: 7062932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-strand breaks in DNA during repair of UV-induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography: effects of hydroxyurea, 5-fluorodeoxyuridine and 1-beta-D-arabinofuranosylcytosine on the kinetics of repair.
    Erixon K; Ahnström G
    Mutat Res; 1979 Feb; 59(2):257-71. PubMed ID: 35744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of DNA damage caused by formaldehyde in human cells.
    Grafstrom RC; Fornace A; Harris CC
    Cancer Res; 1984 Oct; 44(10):4323-7. PubMed ID: 6467194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum.
    Fornace AJ; Kohn KW; Kann HE
    Proc Natl Acad Sci U S A; 1976 Jan; 73(1):39-43. PubMed ID: 1751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Occurrence and elimination of single- and double-stranded DNA breaks in the fibroblasts of xeroderma pigmentosum patients exposed to gamma radiation].
    Mikhel'son VM; Pleskach NM; Prokof'eva VV
    Tsitologiia; 1985 May; 27(5):592-8. PubMed ID: 4012862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide.
    Mirzayans R; Paterson MC
    Mutat Res; 1991 Jul; 255(1):57-65. PubMed ID: 1906130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH on the neoplastic transformation of normal human skin fibroblasts by N-hydroxy-1-naphthylamine and N-hydroxy-2-naphthylamine.
    Oldham JW; Kadlubar FF; Milo GE
    Carcinogenesis; 1981; 2(9):937-40. PubMed ID: 7296774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse correlation between p53 protein levels and DNA repair efficiency in human fibroblast strains treated with 4-nitroquinoline 1-oxide: evidence that lesions other than DNA strand breaks trigger the p53 response.
    Mirzayans R; Bashir S; Murray D; Paterson MC
    Carcinogenesis; 1999 Jun; 20(6):941-6. PubMed ID: 10357771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal rate of DNA breakage in xeroderma pigmentosum complementation group E cells treated with 8-methoxypsoralen plus near-ultraviolet radiation.
    Bredberg A; Söderhäll S
    Biochim Biophys Acta; 1985 Mar; 824(3):268-71. PubMed ID: 3970936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective postreplication repair in xeroderma pigmentosum variant fibroblasts.
    Boyer JC; Kaufmann WK; Brylawski BP; Cordeiro-Stone M
    Cancer Res; 1990 May; 50(9):2593-8. PubMed ID: 2109654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of gamma-ray-induced DNA base damage in xeroderma pigmentosum cells.
    Fornace AJ; Dobson PP; Kinsella TJ
    Radiat Res; 1986 Apr; 106(1):73-7. PubMed ID: 3961106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmethanesulfonate-induced DNA damage and its repair in cultured human fibroblasts: normal rates of induction and removal of alkali-labile sites in xeroderma pigmentosum (group A) cells.
    Mirzayans R; Liuzzi M; Paterson MC
    Carcinogenesis; 1988 Dec; 9(12):2257-63. PubMed ID: 3191570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanisms of impairment of DNA repair in human cells. Interferons stimulated DNA repair in xeroderma pigmentosum cells].
    Sinel'shchikova TA; Chekova VV; Zasukhina GD
    Genetika; 1989 Sep; 25(9):1658-63. PubMed ID: 2513259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage and its repair in human normal or xeroderma pigmentosum fibroblasts treated with 4-nitroquinoline 1-oxide or its 3-methyl derivative.
    Mirzayans R; Waters R
    Carcinogenesis; 1981; 2(12):1359-62. PubMed ID: 6799219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal repair of gamma radiation-induced single-strand and double-strand DNA breaks in retinoblastoma fibroblasts.
    Woods WG; Lopez M; Kalvonjian SL
    Biochim Biophys Acta; 1982 Jul; 698(1):40-8. PubMed ID: 7115720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustered repair of excisable 4-nitroquinoline-1-oxide adducts in a larger fraction of genomic DNA of xeroderma pigmentosum complementation group C cells.
    Fujiwara Y
    Carcinogenesis; 1989 Oct; 10(10):1777-85. PubMed ID: 2507185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction and repair of DNA strand breaks in cultured human fibroblasts exposed to various phenols and dihydrodiols of benzo[a]pyrene.
    Nordenskjöld M; Jernström B
    Chem Biol Interact; 1982 Aug; 41(2):155-68. PubMed ID: 6286156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.