These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 4011055)

  • 1. Supraspinal loops that mediate visceral inputs to thoracic spinal cord neurones in the cat: involvement of descending pathways from raphe and reticular formation.
    Cervero F; Lumb BM; Tattersall JE
    Neurosci Lett; 1985 May; 56(2):189-94. PubMed ID: 4011055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral inputs and supraspinal control of viscerosomatic neurones in the lower thoracic spinal cord of the cat.
    Cervero F; Lumb BM
    J Physiol; 1988 Sep; 403():221-37. PubMed ID: 3253422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei.
    Tattersall JE; Cervero F; Lumb BM
    J Neurophysiol; 1986 Nov; 56(5):1411-23. PubMed ID: 3794775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system.
    Cervero F
    J Physiol; 1983 Apr; 337():51-67. PubMed ID: 6875945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn.
    Cervero F; Tattersall JE
    J Physiol; 1987 Jul; 388():383-95. PubMed ID: 3450285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supraspinal connections of neurones in the thoracic spinal cord of the cat: ascending projections and effects of descending impulses.
    Cervero F
    Brain Res; 1983 Sep; 275(2):251-61. PubMed ID: 6626982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A positive feedback loop between spinal cord nociceptive pathways and antinociceptive areas of the cat's brain stem.
    Cervero F; Wolstencroft JH
    Pain; 1984 Oct; 20(2):125-138. PubMed ID: 6504550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of reversible spinalization on the visceral input to viscerosomatic neurons in the lower thoracic spinal cord of the cat.
    Tattersall JE; Cervero F; Lumb BM
    J Neurophysiol; 1986 Sep; 56(3):785-96. PubMed ID: 3783220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral reticular regions and the descending control of dorsal horn neurones of the cat: selective inhibition by electrical stimulation.
    Morton CR; Johnson SM; Duggan AW
    Brain Res; 1983 Sep; 275(1):13-21. PubMed ID: 6626971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raphe magnus inhibition of feline T1-T4 spinoreticular tract cell responses to visceral and somatic inputs.
    Chapman CD; Ammons WS; Foreman RD
    J Neurophysiol; 1985 Mar; 53(3):773-85. PubMed ID: 3981238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothalamic influences on viscero-somatic neurones in the lower thoracic spinal cord of the anaesthetized rat.
    Lumb BM
    J Physiol; 1990 May; 424():427-44. PubMed ID: 2167974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonic descending inhibition affects intensity coding of nociceptive responses of spinal dorsal horn neurones in the cat.
    Dickhaus H; Pauser G; Zimmermann M
    Pain; 1985 Oct; 23(2):145-158. PubMed ID: 4069718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat.
    Mokha SS; McMillan JA; Iggo A
    Exp Brain Res; 1986; 61(3):597-606. PubMed ID: 3007190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition from nucleus raphe magnus of tooth pulp responses in medial reticular neurones of the cat can be antagonized by bicuculline.
    Lovick TA; Wolstencroft JH
    Neurosci Lett; 1980 Oct; 19(3):325-30. PubMed ID: 7052538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission.
    Ren K; Randich A; Gebhart GF
    J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective changes of receptive field properties of spinal nociceptive neurones induced by noxious visceral stimulation in the cat.
    Cervero F; Laird JMA; Pozo MA
    Pain; 1992 Dec; 51(3):335-342. PubMed ID: 1491861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory controls on thermal neurones in the spinal trigeminal nucleus of cats and rats.
    Dawson NJ; Dickenson AH; Hellon RF; Woolf CJ
    Brain Res; 1981 Mar; 209(2):440-5. PubMed ID: 7225804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.