These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 4011704)

  • 61. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin.
    Pande AJ; Callender RH; Ebrey TG; Tsuda M
    Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Effect of gamma irradiation on rhodopsin].
    Pushkareva TV; Shmelev GE; Sverdlov AG
    Radiobiologiia; 1977; 17(6):903-6. PubMed ID: 601200
    [No Abstract]   [Full Text] [Related]  

  • 64. Light-regulated permeability of rhodopsin-phospholipid membrane vesicles.
    O'Brien DF
    Photochem Photobiol; 1979 Apr; 29(4):679-85. PubMed ID: 451007
    [No Abstract]   [Full Text] [Related]  

  • 65. Interpretation of resonance Raman spectra of biological molecules.
    Warshel A
    Annu Rev Biophys Bioeng; 1977; 6():273-300. PubMed ID: 326148
    [No Abstract]   [Full Text] [Related]  

  • 66. Specific photoisomerization of retinal in squid rhodopsin and metarhodopsin.
    Suzuki T; Makino M
    Biochim Biophys Acta; 1981 Jun; 636(1):27-31. PubMed ID: 7284342
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bathorhodopsin intermediates from 11-cis-rhodopsin and 9-cis-rhodopsin.
    Spalink JD; Reynolds AH; Rentzepis PM; Sperling W; Applebury ML
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1887-91. PubMed ID: 6572950
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.
    Piechnick R; Heck M; Sommer ME
    Biochemistry; 2011 Aug; 50(33):7168-76. PubMed ID: 21766795
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of carboxylic acid side chains on the absorption maximum of visual pigments.
    Zhukovsky EA; Oprian DD
    Science; 1989 Nov; 246(4932):928-30. PubMed ID: 2573154
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments).
    Kosower EM
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1076-80. PubMed ID: 3422479
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N; Michel-Villaz M; Kühn H
    Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modeling the resonance Raman spectrum of a metarhodopsin: implications for the color of visual pigments.
    Sulkes M; Lewis A; Lemley AT; Cookingham R
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4266-70. PubMed ID: 1069982
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photoinduced isochromic rearrangement in rhodopsin.
    Fesenko EE; Ratner VL; Lyubarsky AL; Bagirov IG
    Gen Physiol Biophys; 1984 Apr; 3(2):135-46. PubMed ID: 6537359
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Light-enhanced cross-linking of rhodopsin in rod outer segment membranes as detected by chemical probes.
    Shaw A; Crain R; Marinetti GV; O'Brien D; Tyminski PN
    Biochim Biophys Acta; 1980 Dec; 603(2):313-21. PubMed ID: 7459357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Release of calcium ions from native outer segments rods after partial rhodopsin bleaching].
    Shevchenko TF; Kalamkarov GR; Kosolapov SS; Ostrovskiĭ MA
    Biofizika; 1981; 26(2):284-7. PubMed ID: 7260134
    [No Abstract]   [Full Text] [Related]  

  • 77. [Peculiarities of rhodopsin photoconversion at the early stages of photolysis].
    Fel'dman TB; Fedorovich IB; Ostrovskiĭ MA
    Ross Fiziol Zh Im I M Sechenova; 2003 Feb; 89(2):113-22. PubMed ID: 12710180
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin.
    Deng H; Callender RH
    Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Schiff-base deprotonation is mandatory for light-dependent rhodopsin phosphorylation.
    Seckler B; Rando RR
    Biochem J; 1989 Dec; 264(2):489-93. PubMed ID: 2604728
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Asp83, Glu113 and Glu134 are not specifically involved in Schiff base protonation or wavelength regulation in bovine rhodopsin.
    Janssen JJ; De Caluwé GL; De Grip WJ
    FEBS Lett; 1990 Jan; 260(1):113-8. PubMed ID: 2105232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.