These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4011907)

  • 1. Chemical shift selective MR imaging using a whole-body magnet.
    Frahm J; Haase A; Hänicke W; Matthaei D; Bomsdorf H; Helzel T
    Radiology; 1985 Aug; 156(2):441-4. PubMed ID: 4011907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple chemical shift selective (CHESS) MR imaging using stimulated echoes.
    Matthaei D; Haase A; Frahm J; Bomsdorf H; Vollmann W
    Radiology; 1986 Sep; 160(3):791-4. PubMed ID: 3737919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical shift selective MR imaging using a whole-body magnet.
    Riederer SJ
    Invest Radiol; 1986 Jun; 21(6):511-2. PubMed ID: 3721809
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical shift-based true water and fat images: regional phase correction of modified spin-echo MR images.
    Borrello JA; Chenevert TL; Meyer CR; Aisen AM; Glazer GM
    Radiology; 1987 Aug; 164(2):531-7. PubMed ID: 3602397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisection fat-water imaging with chemical shift selective presaturation.
    Keller PJ; Hunter WW; Schmalbrock P
    Radiology; 1987 Aug; 164(2):539-41. PubMed ID: 3602398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of intramyocellular lipids by 1H-magnetic resonance spectroscopy.
    Boesch C; Kreis R
    Ann N Y Acad Sci; 2000 May; 904():25-31. PubMed ID: 10865706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical-shift-selective magnetic-resonance imaging of avascular necrosis of the femoral head.
    Matthaei D; Frahm J; Haase A; Schuster R; Bomsdorf H
    Lancet; 1985 Feb; 1(8425):370-1. PubMed ID: 2857422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets.
    Fusch C; Slotboom J; Fuehrer U; Schumacher R; Keisker A; Zimmermann W; Moessinger A; Boesch C; Blum J
    Pediatr Res; 1999 Oct; 46(4):465-73. PubMed ID: 10509370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of true fat and water images by correcting magnetic field inhomogeneity in situ.
    Yeung HN; Kormos DW
    Radiology; 1986 Jun; 159(3):783-6. PubMed ID: 3704157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive MR thermography using the water proton chemical shift.
    Kuroda K
    Int J Hyperthermia; 2005 Sep; 21(6):547-60. PubMed ID: 16147439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-body 3D water/fat resolved continuously moving table imaging.
    Börnert P; Keupp J; Eggers H; Aldefeld B
    J Magn Reson Imaging; 2007 Mar; 25(3):660-5. PubMed ID: 17326078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined chemical-shift and phase-selective imaging for fat suppression: theory and initial clinical experience.
    Chan TW; Listerud J; Kressel HY
    Radiology; 1991 Oct; 181(1):41-7. PubMed ID: 1887054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of relative fat content by proton magnetic resonance spectroscopy using a clinical imager.
    Kamba M; Meshitsuka S; Iriguchi N; Koda M; Kimura K; Ogawa T
    J Magn Reson Imaging; 2000 Mar; 11(3):330-5. PubMed ID: 10739566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) of the wrist and finger at 3T: comparison with chemical shift selective fat suppression images.
    Aoki T; Yamashita Y; Oki H; Takahashi H; Hayashida Y; Saito K; Tanaka Y; Korogi Y
    J Magn Reson Imaging; 2013 Mar; 37(3):733-8. PubMed ID: 22911970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast three-point dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging.
    Rybicki FJ; Chung T; Reid J; Jaramillo D; Mulkern RV; Ma J
    AJR Am J Roentgenol; 2001 Nov; 177(5):1019-23. PubMed ID: 11641161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad line quantitative chemical shift spectroscopy.
    Sobol WT; Elster AD; Hinson WH; Chwals WJ
    Med Phys; 1992; 19(1):61-9. PubMed ID: 1620060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical shift imaging: a review.
    Brateman L
    AJR Am J Roentgenol; 1986 May; 146(5):971-80. PubMed ID: 3008543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body MRI using IDEAL.
    Costa DN; Pedrosa I; McKenzie C; Reeder SB; Rofsky NM
    AJR Am J Roentgenol; 2008 Apr; 190(4):1076-84. PubMed ID: 18356458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of silicone gel from water and fat in MR phase imaging of protons at 0.064 T.
    Derby KA; Frankel SD; Kaufman L; Carlson JW; Mineyev MI; Occhipinti KA; Friedenthal R
    Radiology; 1993 Nov; 189(2):617-20. PubMed ID: 8210399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fat suppression with short inversion time inversion-recovery and chemical-shift selective saturation: a dual STIR-CHESS combination prepulse for turbo spin echo pulse sequences.
    Tanabe K; Nishikawa K; Sano T; Sakai O; Jara H
    J Magn Reson Imaging; 2010 May; 31(5):1277-81. PubMed ID: 20432368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.