BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4012037)

  • 1. Breed and species comparison of amino acid transport variation in equine erythrocytes.
    Fincham DA; Young JD; Mason DK; Collins EA; Snow DH
    Res Vet Sci; 1985 May; 38(3):346-51. PubMed ID: 4012037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii).
    Fincham DA; Ellory JC; Young JD
    Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation.
    Fincham DA; Mason DK; Paterson JY; Young JD
    J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes.
    Fincham DA; Mason DK; Young JD
    Biochem J; 1985 Apr; 227(1):13-20. PubMed ID: 3994678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of insulin and the C-peptide of proinsulin from Przewalski's horse, zebra, rhino, and tapir (Perissodactyla).
    Henry JS; Lance VA; Conlon JM
    Gen Comp Endocrinol; 1993 Feb; 89(2):299-308. PubMed ID: 8454175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells.
    Young JD; Wolowyk MW; Jones SM; Ellory JC
    Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences.
    Lau AN; Peng L; Goto H; Chemnick L; Ryder OA; Makova KD
    Mol Biol Evol; 2009 Jan; 26(1):199-208. PubMed ID: 18931383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horse haemoglobin phenotyping by agarose gel isoelectric focusing comparison of Thoroughbreds with other Equidae.
    Osterhoff DR; Groenewald J
    Anim Blood Groups Biochem Genet; 1984; 15(1):37-40. PubMed ID: 6742514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents.
    Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K
    Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Successful transfer of the embryos of Przewalski's horses (Equus przewalskii) and Grant's zebra (E. burchelli) to domestic mares (E. caballus).
    Summers PM; Shephard AM; Hodges JK; Kydd J; Boyle MS; Allen WR
    J Reprod Fertil; 1987 May; 80(1):13-20. PubMed ID: 3598950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and chemical composition of the leucocytes from donkey, horse, mule and pig.
    Rocha M; Cabezas M; Cabezas JA
    Comp Biochem Physiol B; 1978; 60(3):239-44. PubMed ID: 318339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R; Stoiber B; Posch M; Windberger U
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated free tyrosine in rhinoceros erythrocytes.
    Weber BW; Paglia DE; Harley EH
    Comp Biochem Physiol A Mol Integr Physiol; 2004 May; 138(1):105-9. PubMed ID: 15165577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the myoglobin of the zebra (Equus burchelli) with that of the horse (Equus caballus).
    Darbre PD; Romero-Herrera AE; Lehmann H
    Biochim Biophys Acta; 1975 May; 393(1):201-4. PubMed ID: 1095063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Population genetic parameters of aboriginal Yakut horses as related to modern breeds of the domestic horse Equus caballus L].
    Tikhonov VN; Cothran EG; Kniazev SP
    Genetika; 1998 Jun; 34(6):796-809. PubMed ID: 9719925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecies variation in milk composition among horses, zebras and asses (Perissodactyla: Equidae).
    Oftedal OT; Jenness R
    J Dairy Res; 1988 Feb; 55(1):57-66. PubMed ID: 3385068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Differentiation of domestic horse and Przewalskis horse using various DNA sequences].
    Glazko VI; Zelenaia LB
    Genetika; 1998 Jul; 34(7):996-9. PubMed ID: 9749342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin polymorphism in Equus przewalskii and E. caballus analyzed by isoelectric focusing.
    Ryder OA; Sparkes RS; Sparkes MC; Clegg JB
    Comp Biochem Physiol B; 1979; 62(4):305-8. PubMed ID: 318448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological examination of epididymal epithelium in the mule (E. hinnus) in comparison with parental species (E. asinus and E. caballus).
    Arrighi S; Romanello MG; Domeneghini C
    Histol Histopathol; 1991 Jul; 6(3):325-37. PubMed ID: 1810531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.