These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 4012760)

  • 1. Cuticular cavities: storage chambers for cyanoglucoside-containing defensive secretions in larvae of a Zygaenid moth.
    Franzl S; Naumann CM
    Tissue Cell; 1985; 17(2):267-78. PubMed ID: 4012760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.
    Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS
    Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative and quantitative studies on the compounds of the larval defensive secretion of Zygaena trifolii (Esper, 1783) (Insecta, Lepidoptera, Zygaenidae).
    Witthohn K; Naumann CM
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(1):103-6. PubMed ID: 6149852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence.
    Niehuis O; Yen SH; Naumann CM; Misof B
    Mol Phylogenet Evol; 2006 Jun; 39(3):812-29. PubMed ID: 16483803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae).
    Zagrobelny M; Bak S; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Nov; 37(11):1189-97. PubMed ID: 17916505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
    Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist.
    Fürstenberg-Hägg J; Zagrobelny M; Jørgensen K; Vogel H; Møller BL; Bak S
    PLoS One; 2014; 9(10):e108745. PubMed ID: 25299618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuticular morphogenesis during continuous growth of the final instar larva of a moth.
    Wolfgang WJ; Riddiford LM
    Tissue Cell; 1981; 13(4):757-72. PubMed ID: 7330856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.
    Zagrobelny M; Møller BL
    Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between epidermal cell structure and endogenous hormone titers during the fifth larval instar of the tobacco hornworm, Manduca sexta.
    Sedlak BJ; Gilbert LI
    Tissue Cell; 1979; 11(4):643-53. PubMed ID: 524341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of de novo biosynthesis of cyanogenic glucosides throughout the life-cycle of the burnet moth Zygaena filipendulae (Lepidoptera).
    Fürstenberg-Hägg J; Zagrobelny M; Olsen CE; Jørgensen K; Møller BL; Bak S
    Insect Biochem Mol Biol; 2014 Jun; 49():80-9. PubMed ID: 24727026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of black and white stripe pattern formation in the cuticles of insect larvae.
    Ninomiya Y; Tanaka K; Hayakawa Y
    J Insect Physiol; 2006 Jun; 52(6):638-45. PubMed ID: 16618489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators.
    Pentzold S; Zagrobelny M; Khakimov B; Engelsen SB; Clausen H; Petersen BL; Borch J; Møller BL; Bak S
    Sci Rep; 2016 Mar; 6():22407. PubMed ID: 26940001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanogenesis and the role of cyanogenic compounds in insects.
    Nahrstedt A
    Ciba Found Symp; 1988; 140():131-50. PubMed ID: 3073053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Biosynthetic Pathway for Cyanogenic Glucosides in Lepidoptera.
    Zagrobelny M; Jensen MK; Vogel H; Feyereisen R; Bak S
    J Mol Evol; 2018 Jul; 86(6):379-394. PubMed ID: 29974176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Male-to-female transfer of 5-hydroxytryptophan glucoside during mating in Zygaena filipendulae (Lepidoptera).
    Zagrobelny M; Motawia MS; Olsen CE; Bak S; Møller BL
    Insect Biochem Mol Biol; 2013 Nov; 43(11):1037-44. PubMed ID: 24012995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of orally dosed linamarin in the rat.
    Barrett MD; Hill DC; Alexander JC; Zitnak A
    Can J Physiol Pharmacol; 1977 Feb; 55(1):134-6. PubMed ID: 843989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New paths of cyanogenesis from enzymatic-promoted cleavage of β-cyanoglucosides are suggested by a mixed DFT/QTAIM approach.
    Díaz-Sobac R; Vázquez-Luna A; Rivadeneyra-Domínguez E; Rodríguez-Landa JF; Guerrero T; Durand-Niconoff JS
    J Mol Model; 2019 Sep; 25(9):295. PubMed ID: 31478108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine structure of the ocellus of the cabbage looper moth (Trichoplusia ni).
    Dow MA; Eaton JL
    Cell Tissue Res; 1976 Sep; 171(4):523-33. PubMed ID: 975228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and hormonal control of a new larval cuticular multigene family at the onset of metamorphosis of the tobacco hornworm.
    Horodyski FM; Riddiford LM
    Dev Biol; 1989 Apr; 132(2):292-303. PubMed ID: 2924995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.