These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 4013083)
1. Growth of the visual system in the African cichlid fish, Haplochromis burtoni. Optics. Fernald RD; Wright SE Vision Res; 1985; 25(2):155-61. PubMed ID: 4013083 [TBL] [Abstract][Full Text] [Related]
2. Growth of the visual system in the African cichlid fish, Haplochromis burtoni. Accommodation. Fernald RD; Wright SE Vision Res; 1985; 25(2):163-70. PubMed ID: 4013084 [TBL] [Abstract][Full Text] [Related]
3. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni. Kröger RH; Campbell MC; Munger R; Fernald RD Vision Res; 1994 Jul; 34(14):1815-22. PubMed ID: 7941384 [TBL] [Abstract][Full Text] [Related]
4. The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni. Kröger RH; Campbell MC; Fernald RD Vision Res; 2001 Mar; 41(5):549-59. PubMed ID: 11226501 [TBL] [Abstract][Full Text] [Related]
5. Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses. Gagnon YL; Kröger RH; Söderberg B Vision Res; 2010 Apr; 50(9):850-3. PubMed ID: 20219517 [TBL] [Abstract][Full Text] [Related]
6. [Optics of the normal eye]. Delmarcelle Y Arch Ophtalmol (Paris); 1977; 37(2):153-62. PubMed ID: 142469 [No Abstract] [Full Text] [Related]
7. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Kröger RH; Gislén A Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679 [TBL] [Abstract][Full Text] [Related]
8. Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Kröger RH; Fernald RD Vision Res; 1994 Jul; 34(14):1807-14. PubMed ID: 7941383 [TBL] [Abstract][Full Text] [Related]
9. Maintenance of optical quality during crystalline lens growth. Fernald RD; Wright SE Nature; 1983 Feb 17-23; 301(5901):618-20. PubMed ID: 6828142 [TBL] [Abstract][Full Text] [Related]
10. Chromatic aberration of the fish eye and its effect on refractive state. Sivak JG; Bobier WR Vision Res; 1978; 18(4):453-5. PubMed ID: 664325 [No Abstract] [Full Text] [Related]
12. The focal length of the fish eye lens and visual acuity. Sadler JD Vision Res; 1973 Feb; 13(2):417-23. PubMed ID: 4692529 [No Abstract] [Full Text] [Related]
13. Image formation by the crystalline lens and eye of the rainbow trout. Jagger WS Vision Res; 1996 Sep; 36(17):2641-55. PubMed ID: 8917751 [TBL] [Abstract][Full Text] [Related]
14. Effect of a yellow ocular filter on chromatic aberration: the fish eye as an example. Sivak JG; Bobier WR Am J Optom Physiol Opt; 1978 Dec; 55(12):813-7. PubMed ID: 753108 [TBL] [Abstract][Full Text] [Related]
15. The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration. Kröger RH; Wagner HJ J Comp Physiol A; 1996 Dec; 179(6):837-42. PubMed ID: 8956500 [TBL] [Abstract][Full Text] [Related]
16. Optical advantages and function of multifocal spherical fish lenses. Gagnon Y; Söderberg B; Kröger R J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1786-93. PubMed ID: 23201932 [TBL] [Abstract][Full Text] [Related]
17. Intraocular lens implant image quality: the optico-retinal interface. Bogorad DD Henry Ford Hosp Med J; 1985; 33(4):153-9. PubMed ID: 4086324 [No Abstract] [Full Text] [Related]
18. Visual receptor pigments in the African cichlid fish, Haplochromis burtoni. Fernald RD; Liebman PA Vision Res; 1980; 20(10):857-64. PubMed ID: 7467140 [No Abstract] [Full Text] [Related]
19. Optics of the developing fish eye: comparisons of Matthiessen's ratio and the focal length of the lens in the black bream Acanthopagrus butcheri (Sparidae, Teleostei). Shand J; Døving KB; Collin SP Vision Res; 1999 Mar; 39(6):1071-8. PubMed ID: 10343827 [TBL] [Abstract][Full Text] [Related]