These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4014)

  • 41. Reduction of cytochrome b-561 through the antimycin-sensitive site of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides.
    Glaser EG; Meinhardt SW; Crofts AR
    FEBS Lett; 1984 Dec; 178(2):336-42. PubMed ID: 6096171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The extent of the stimulated electrical potential decay under phosphorylating conditions and the H+/ATP ratio in Rhodopseudomonas sphaeroides chromatophores following short flash excitation.
    Jackson JB; Saphon S; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):83-92. PubMed ID: 240445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two regimens of electrogenic cyclic redox chain operation in chromatophores of non-sulfur purple bacteria. A study using antimycin A.
    Remennikov VG; Samuilov VD
    Biochim Biophys Acta; 1979 Nov; 548(2):216-33. PubMed ID: 116681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energetics of quinone-dependent electron and proton transfers in Rhodobacter sphaeroides photosynthetic reaction centers.
    Zhu Z; Gunner MR
    Biochemistry; 2005 Jan; 44(1):82-96. PubMed ID: 15628848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Light-induced tetracycline accumulation by Rhodopseudomonas sphaeroides.
    Weckesser J; Magnuson JA
    J Supramol Struct; 1976; 4(4):515-20. PubMed ID: 1084445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single and multiple turnover reactions in the ubiquinone-cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroids: the physical chemistry of the major electron donor to cytochrome c2, and its coupled reactions.
    Prince RC; Dutton PL
    Biochim Biophys Acta; 1977 Dec; 462(3):731-47. PubMed ID: 202311
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electron transport in chromatophores from Rhodopseudomonas sphaeroides GA fused with liposomes.
    Snozzi M; Crofts AR
    Biochim Biophys Acta; 1984 Aug; 766(2):451-63. PubMed ID: 6331848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow electrogenic events in the cytochrome bc1-complex of Rhodobacter sphaeroides. The electron transfer between cytochrome b hemes can be non-electrogenic.
    Mulkidjanian AYa ; Mamedov MD; Drachev LA
    FEBS Lett; 1991 Jun; 284(2):227-31. PubMed ID: 1647985
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of the Rieske iron-sulfur center as the electron donor to ferricytochrome c2 in Rhodopseudomonas sphaeroides.
    Bowyer JR; Dutton PL; Prince RC; Crofts AR
    Biochim Biophys Acta; 1980 Oct; 592(3):445-60. PubMed ID: 6251867
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamics and kinetics of the H+ pump in mitochondrial electron transport.
    Azzone GF; Pozzan T; Bragadin M; Miconi V
    J Biol Chem; 1979 Oct; 254(20):10213-9. PubMed ID: 39934
    [No Abstract]   [Full Text] [Related]  

  • 51. Nitric oxide-dependent proton translocation in various denitrifiers.
    Shapleigh JP; Payne WJ
    J Bacteriol; 1985 Sep; 163(3):837-40. PubMed ID: 3928599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein.
    MarĂ³ti P; Wraight CA
    Biophys J; 1997 Jul; 73(1):367-81. PubMed ID: 9199801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons.
    Baccarini Melandri A; Casadio R; Melandri BA
    Eur J Biochem; 1977 Sep; 78(2):389-402. PubMed ID: 913405
    [No Abstract]   [Full Text] [Related]  

  • 54. Effect of ion conductance changes in the mitochondrial membrane on the kinetics of respiratory carriers.
    Papa S; Scarpa A; Lee CP; Chance B
    Biochemistry; 1972 Aug; 11(16):3091-8. PubMed ID: 5041914
    [No Abstract]   [Full Text] [Related]  

  • 55. The function and localization of ubiquinone in the NADH and succinate oxidase systems of Rhodopseudomonas palustris.
    King MT; Drews G
    Biochim Biophys Acta; 1973 May; 305(2):230-48. PubMed ID: 4147456
    [No Abstract]   [Full Text] [Related]  

  • 56. A comparison of beauvericin, enniatin and valinomycin as calcium transporting agents in liposomes and chromatophores.
    Prince RC; Crofts AR; Steinrauf LK
    Biochem Biophys Res Commun; 1974 Jul; 59(2):697-703. PubMed ID: 4546705
    [No Abstract]   [Full Text] [Related]  

  • 57. Exploring the primary electron acceptor (QA)-site of the bacterial reaction center from Rhodobacter sphaeroides. Binding mode of vitamin K derivatives.
    Hucke O; Schmid R; Labahn A
    Eur J Biochem; 2002 Feb; 269(4):1096-108. PubMed ID: 11856340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The primary photochemical reaction to bacterial photosynthesis.
    Parson WW; Cogdell RJ
    Biochim Biophys Acta; 1975 Mar; 416(1):105-49. PubMed ID: 235329
    [No Abstract]   [Full Text] [Related]  

  • 59. The effect of diaminodurene on the delayed light and the carotenoid band shift in Rhodopseudomonas spheroides.
    Sherman LA
    Biochim Biophys Acta; 1972; 283(1):67-78. PubMed ID: 4539374
    [No Abstract]   [Full Text] [Related]  

  • 60. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata.
    Bowyer JR; Tierney GV; Crofts AR
    FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.