BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 4014448)

  • 21. Differential effects of respiratory inhibitors on glycolysis in proximal tubules.
    Dickman KG; Mandel LJ
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1608-15. PubMed ID: 2163215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human hepatocytes are more resistant than rat hepatocytes to anoxia-reoxygenation injury.
    Caraceni P; Gasbarrini A; Nussler A; Di Silvio M; Bartoli F; Borle AB; Van Thiel DH
    Hepatology; 1994 Nov; 20(5):1247-54. PubMed ID: 7927259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of fatty acids on energy metabolism. 2. Kinetics of changes in metabolic rates and changes in subcellular adenine nucleotide contents and pH gradients following addition of octanoate and oleate in perfused rat liver.
    Soboll S; GrĂ¼ndel S; Schwabe U; Scholz R
    Eur J Biochem; 1984 May; 141(1):231-6. PubMed ID: 6723661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of ATP and adenosine addition on activity of oxoglutarate dehydrogenase and the concentration of cytoplasmic free Ca2+ in rat hepatocytes.
    Staddon JM; McGivan JD
    Eur J Biochem; 1985 Sep; 151(3):567-72. PubMed ID: 4029149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial transmembrane ion distribution during anoxia.
    Aw TY; Andersson BS; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C356-61. PubMed ID: 3565556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia.
    Vincent MF; Van den Berghe G; Hers HG
    Biochem J; 1982 Jan; 202(1):117-23. PubMed ID: 7082301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cadmium on the energy metabolism of isolated hepatocytes: its relationship with the nonviability of isolated hepatocytes caused by cadmium.
    Liu RM; Liun YG
    Biomed Environ Sci; 1990 Sep; 3(3):251-61. PubMed ID: 2252545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of fructose on adenosine triphosphate depletion following mitochondrial dysfunction and lethal cell injury in isolated rat hepatocytes.
    Cannon JR; Harvison PJ; Rush GF
    Toxicol Appl Pharmacol; 1991 May; 108(3):407-16. PubMed ID: 2020968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules.
    Weinberg JM; Humes HD
    Am J Physiol; 1986 Apr; 250(4 Pt 2):F720-33. PubMed ID: 3963208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of mitochondrial content of adenine nucleotides by submicromolar calcium concentrations and its relationship to hormonal effects.
    Haynes RC; Picking RA; Zaks WJ
    J Biol Chem; 1986 Dec; 261(34):16121-5. PubMed ID: 3097000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of high and low pH on Ca2+i and on cell injury evoked by anoxia in perfused rat hepatocytes.
    Gasbarrini A; Caraceni P; Farghali H; Van Thiel DH; Borle AB
    Biochim Biophys Acta; 1994 Feb; 1220(3):277-85. PubMed ID: 8305500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age dependence of tolerance to anoxia and changes in cytosolic calcium in rabbit renal proximal tubules.
    Constantinescu AR; Rozental R; Barac-Nieto M
    Pediatr Nephrol; 1996 Oct; 10(5):606-12. PubMed ID: 8897566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential sensitivity of AS-30D rat hepatoma cells and normal hepatocytes to anoxic cell damage.
    Kobryn CE; Fiskum G
    Am J Physiol; 1992 Jun; 262(6 Pt 1):C1384-7. PubMed ID: 1616005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial dysfunction during anoxia/reoxygenation injury of liver sinusoidal endothelial cells.
    Fujii Y; Johnson ME; Gores GJ
    Hepatology; 1994 Jul; 20(1 Pt 1):177-85. PubMed ID: 7517381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of isoflurane dose, duration of anoxia, and reoxygenation on isoflurane's preservation of energy balance in anoxic isolated hepatocytes.
    Samuta T; Becker GL; Pohorecki R; Armstrong K; Landers DF
    Anesth Analg; 1993 Jul; 77(1):38-43. PubMed ID: 8317743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of cellular energy status in tocopheryl hemisuccinate cytoprotection against ethyl methanesulfonate-induced toxicity.
    Ray SD; Fariss MW
    Arch Biochem Biophys; 1994 May; 311(1):180-90. PubMed ID: 8185315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation.
    Subramanian RM; Chandel N; Budinger GR; Schumacker PT
    Hepatology; 2007 Feb; 45(2):455-64. PubMed ID: 17366663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of anoxia, aglycemia, and acidosis on cytosolic Mg2+, ATP, and pH in rat sensory neurons.
    Henrich M; Buckler KJ
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C280-94. PubMed ID: 17977942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of intracellular pH in suspensions of renal tubules from potassium-depleted rats.
    Schoolwerth AC; Culpepper RM
    Miner Electrolyte Metab; 1990; 16(4):191-6. PubMed ID: 2277602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen deprivation-induced injury to isolated rabbit kidney tubules.
    Weinberg JM
    J Clin Invest; 1985 Sep; 76(3):1193-208. PubMed ID: 4044830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.