These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 4015110)
1. Decreased mitochondrial creatine kinase activity in dystrophic chicken breast muscle alters creatine-linked respiratory coupling. Bennett VD; Hall N; DeLuca M; Suelter CH Arch Biochem Biophys; 1985 Jul; 240(1):380-91. PubMed ID: 4015110 [TBL] [Abstract][Full Text] [Related]
2. Influence of mitochondrial creatine kinase on the mitochondrial/extramitochondrial distribution of high energy phosphates in muscle tissue: evidence for a leak in the creatine shuttle. Soboll S; Conrad A; Hebisch S Mol Cell Biochem; 1994; 133-134():105-13. PubMed ID: 7808448 [TBL] [Abstract][Full Text] [Related]
3. Creatine kinase of heart mitochondria. Control of oxidative phosphorylation by the extramitochondrial concentrations of creatine and phosphocreatine. Jacobus WE; Diffley DM J Biol Chem; 1986 Dec; 261(35):16579-83. PubMed ID: 3782135 [TBL] [Abstract][Full Text] [Related]
4. Compartmented coupling of chicken heart mitochondrial creatine kinase to the nucleotide translocase requires the outer mitochondrial membrane. Brooks SP; Suelter CH Arch Biochem Biophys; 1987 Aug; 257(1):144-53. PubMed ID: 2820307 [TBL] [Abstract][Full Text] [Related]
5. Computerized calculation of in vitro generation of ATP and creatine phosphate induced by respiration in human muscle mitochondria. Fischer JC; Ruitenbeek W; Stadhouders AM; Trijbels JM; Sengers RC; Janssen AJ; Veerkamp JH; Bindels RJ Comput Biol Med; 1985; 15(5):269-77. PubMed ID: 3840068 [TBL] [Abstract][Full Text] [Related]
6. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria. Yang WC; Geiger PJ; Besman SP Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451 [No Abstract] [Full Text] [Related]
7. The levels of creatine kinase and adenylate kinase in the plasma of dystrophic chickens reflect the rates of loss of these enzymes from the circulation. Husic HD; Suelter CH Biochem Med; 1983 Jun; 29(3):318-36. PubMed ID: 6311191 [TBL] [Abstract][Full Text] [Related]
8. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
9. Content and synthesis of glycolytic enzymes and creatine kinase in skeletal muscles and normal and dystrophic chickens. Petell JK; Lebherz HG Arch Biochem Biophys; 1985 Feb; 237(1):271-80. PubMed ID: 3970544 [TBL] [Abstract][Full Text] [Related]
10. The amino acid sequence of the peptide containing the thiol group of creatine kinase from normal and dystrophic chicken breast muscle. Comparison of some of the immunological properties of the antibodies developed in rabbits against these enzymes. Roy BP Biochem J; 1974 Oct; 143(1):171-9. PubMed ID: 4219281 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Aliev MK; Saks VA Biochim Biophys Acta; 1993 Jul; 1143(3):291-300. PubMed ID: 8329438 [TBL] [Abstract][Full Text] [Related]
12. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Saks VA; Kongas O; Vendelin M; Kay L Acta Physiol Scand; 2000 Apr; 168(4):635-41. PubMed ID: 10759600 [TBL] [Abstract][Full Text] [Related]
13. Association of chicken mitochondrial creatine kinase with the inner mitochondrial membrane. Brooks SP; Suelter CH Arch Biochem Biophys; 1987 Feb; 253(1):122-32. PubMed ID: 3813558 [TBL] [Abstract][Full Text] [Related]
14. Progressive loss of mitochondrial creatine phosphokinase activity in muscular dystrophy. Mahler M Biochem Biophys Res Commun; 1979 Jun; 88(3):895-906. PubMed ID: 465087 [No Abstract] [Full Text] [Related]
15. Functional coupling between nucleoside diphosphate kinase of the outer mitochondrial compartment and oxidative phosphorylation. Lipskaya TY; Voinova VV Biochemistry (Mosc); 2005 Dec; 70(12):1354-62. PubMed ID: 16417458 [TBL] [Abstract][Full Text] [Related]
16. The effect of inorganic phosphate on creatine kinase in respiring rat heart mitochondria. Hall N; DeLuca M Arch Biochem Biophys; 1984 Mar; 229(2):477-82. PubMed ID: 6703707 [TBL] [Abstract][Full Text] [Related]
17. Myofibrillar protein degradation in the chicken. 3-Methylhistidine release in vivo and in vitro in normal and genetically muscular-dystrophic chickens. Hillgartner FB; Williams AS; Flanders JA; Morin D; Hansen RJ Biochem J; 1981 May; 196(2):591-601. PubMed ID: 7316997 [TBL] [Abstract][Full Text] [Related]
18. Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Kuznetsov AV; Khuchua ZA; Vassil'eva EV; Medved'eva NV; Saks VA Arch Biochem Biophys; 1989 Jan; 268(1):176-90. PubMed ID: 2912374 [TBL] [Abstract][Full Text] [Related]
19. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture. Seraydarian MW; Artaza L; Abbott BC J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045 [No Abstract] [Full Text] [Related]
20. Development of normal and dystrophic chick muscle in tissue culture. Production and release of creatine kinase and acetylcholinesterase. Weinstock IM; Jones KB; Behrendt JR J Neurol Sci; 1978 Nov; 39(1):71-83. PubMed ID: 731275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]