These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 4015695)

  • 1. Inhibition of hepatic microsomal drug metabolism by the calcium channel blockers diltiazem and verapamil.
    Renton KW
    Biochem Pharmacol; 1985 Jul; 34(14):2549-53. PubMed ID: 4015695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of hepatic microsomal drug metabolism by the immunosuppressive agent cyclosporin A.
    Moochhala SM; Renton KW
    Biochem Pharmacol; 1986 May; 35(9):1499-503. PubMed ID: 3707614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes.
    Yeo KR; Yeo WW
    Br J Clin Pharmacol; 2001 May; 51(5):461-70. PubMed ID: 11422004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of hepatic microsomal drug metabolism in rats by five calcium antagonists.
    Mäenpää J; Ruskoaho H; Pelkonen O
    Pharmacol Toxicol; 1989 May; 64(5):446-50. PubMed ID: 2771871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites.
    Sutton D; Butler AM; Nadin L; Murray M
    J Pharmacol Exp Ther; 1997 Jul; 282(1):294-300. PubMed ID: 9223567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of diltiazem on diazepam metabolism in the mouse hepatic microsomes.
    Ihara N; Kokufu T; Sugioka N; Ohta T; Nosaka K
    Biol Pharm Bull; 1993 Mar; 16(3):331-3. PubMed ID: 8364486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of calcium channel blocking agents on the reductive metabolism of halothane.
    Kawahara M; Akita S; Fujii K; Morio M
    J Appl Toxicol; 1991 Feb; 11(1):29-31. PubMed ID: 1902495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronotropic, inotropic, and vasodilator actions of diltiazem, nifedipine, and verapamil. A comparative study of physiological responses and membrane receptor activity.
    Millard RW; Grupp G; Grupp IL; DiSalvo J; DePover A; Schwartz A
    Circ Res; 1983 Feb; 52(2 Pt 2):I29-39. PubMed ID: 6831652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory action of calcium antagonists on ATP-dependent calcium uptake by the renal cortical microsomes.
    Dan T; Gemba M
    Jpn J Pharmacol; 1980 Dec; 30(6):913-7. PubMed ID: 7241862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+)-channel blockers and nucleoside triphosphate diphosphohydrolase (NTPDase) influence of diltiazem, nifedipine, and verapamil.
    Gendron FP; Latour JG; Gravel D; Wang Y; Beaudoin AR
    Biochem Pharmacol; 2000 Dec; 60(12):1959-65. PubMed ID: 11108813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation.
    Jones DR; Gorski JC; Hamman MA; Mayhew BS; Rider S; Hall SD
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1116-25. PubMed ID: 10454485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of cyclosporin A (CsA) on hepatic microsomal drug metabolism in the rat.
    Augustine JA; Zemaitis MA
    Drug Metab Dispos; 1986; 14(1):73-8. PubMed ID: 2868869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A.
    Ma B; Prueksaritanont T; Lin JH
    Drug Metab Dispos; 2000 Feb; 28(2):125-30. PubMed ID: 10640508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent modulation of [3H]nitrendipine binding by the calcium channel antagonists verapamil and diltiazem in rat brain synaptosomes.
    Boles RG; Yamamura HI; Schoemaker H; Roeske WR
    J Pharmacol Exp Ther; 1984 May; 229(2):333-9. PubMed ID: 6716261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil.
    Wang YH; Jones DR; Hall SD
    Drug Metab Dispos; 2005 May; 33(5):664-71. PubMed ID: 15689501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of diltiazem and verapamil on (+)-PN 200-110 binding kinetics in dog cardiac membranes.
    Miwa K; Miyagi Y; Araie E; Sasayama S
    Eur J Pharmacol; 1992 Apr; 214(2-3):127-32. PubMed ID: 1325351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liver monooxygenase activity after multiple application of nifedipin, verapamil and diltiazem.
    Koleva M; Stoytchev T
    Acta Physiol Pharmacol Bulg; 1990; 16(4):16-22. PubMed ID: 2130625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in antipyrine and indocyanine green kinetics during nifedipine, verapamil, and diltiazem therapy.
    Bauer LA; Stenwall M; Horn JR; Davis R; Opheim K; Greene L
    Clin Pharmacol Ther; 1986 Aug; 40(2):239-42. PubMed ID: 3731687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites.
    Wang YH; Jones DR; Hall SD
    Drug Metab Dispos; 2004 Feb; 32(2):259-66. PubMed ID: 14744949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-channel blocking agents.
    Leonard RG; Talbert RL
    Clin Pharm; 1982; 1(1):17-33. PubMed ID: 6764159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.