These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4016089)

  • 1. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes.
    Kleinfeld AM; Lukacovic MF
    Biochemistry; 1985 Apr; 24(8):1883-90. PubMed ID: 4016089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b5.
    Fleming PJ; Koppel DE; Lau AL; Strittmatter P
    Biochemistry; 1979 Nov; 18(24):5458-64. PubMed ID: 518849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan imaging of membrane proteins.
    Kleinfeld AM
    Biochemistry; 1985 Apr; 24(8):1874-82. PubMed ID: 4016088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies of cytochrome b5 topography. Incorporation of cytochrome b5 into brominated phosphatidylcholine vesicles by deoxycholate.
    Tennyson J; Holloway PW
    J Biol Chem; 1986 Oct; 261(30):14196-200. PubMed ID: 3771530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interaction.
    Chester DW; Skita V; Young HS; Mavromoustakos T; Strittmatter P
    Biophys J; 1992 May; 61(5):1224-43. PubMed ID: 1600082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles.
    Kleinfeld AM; Chu P; Storch J
    Biochemistry; 1997 May; 36(19):5702-11. PubMed ID: 9153410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain.
    Ladokhin AS; Wang L; Steggles AW; Holloway PW
    Biochemistry; 1991 Oct; 30(42):10200-6. PubMed ID: 1931948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric and fluorescence characterization of interactions between cytochrome b5 and phosphatidylcholine bilayers.
    Freire E; Markello T; Rigell C; Holloway PW
    Biochemistry; 1983 Mar; 22(7):1675-80. PubMed ID: 6849876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nonpolar peptide segment of cytochrome b5. Binding to phospholipid vesicles and identification of the fluorescent tryptophanyl residue.
    Fleming PJ; Strittmatter P
    J Biol Chem; 1978 Nov; 253(22):8198-202. PubMed ID: 711745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topography of the C terminus of cytochrome b5 tightly bound to dimyristoylphosphatidylcholine vesicles.
    Arinç E; Rzepecki LM; Strittmatter P
    J Biol Chem; 1987 Nov; 262(32):15563-7. PubMed ID: 3680211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine.
    Everett J; Zlotnick A; Tennyson J; Holloway PW
    J Biol Chem; 1986 May; 261(15):6725-9. PubMed ID: 3700412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photo-chemically induced dynamic nuclear polarization NMR study on rabbit and bovine cytochrome b5.
    Hori A; Hayashi F; Kyogoku Y; Akutsu H
    Eur J Biochem; 1988 Jun; 174(3):503-8. PubMed ID: 3391168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.
    Storch EM; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5054-64. PubMed ID: 10213608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the topography of cytochrome b5 in lipid vesicles by fluorescence quenching.
    Markello T; Zlotnick A; Everett J; Tennyson J; Holloway PW
    Biochemistry; 1985 Jun; 24(12):2895-901. PubMed ID: 4016077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of cytochrome b5 into lipid vesicles in a form which is nonsusceptible to attack by carboxypeptidase Y.
    Christiansen K; Carlsen J
    Biochim Biophys Acta; 1985 May; 815(2):215-22. PubMed ID: 3995025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional properties of the membrane binding segment of cytochrome b5.
    Dailey HA; Strittmatter P
    J Biol Chem; 1978 Nov; 253(22):8203-9. PubMed ID: 711746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological studies of the membrane-binding segment of cytochrome b5 embedded in phosphatidylcholine vesicles.
    Tajima S; Sato R
    J Biochem; 1980 Jan; 87(1):123-34. PubMed ID: 7358621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The function of tyrosine 74 of cytochrome b5.
    Vergères G; Chen DY; Wu FF; Waskell L
    Arch Biochem Biophys; 1993 Sep; 305(2):231-41. PubMed ID: 8373159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.