These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 4016108)
1. The monensin-mediated transport of sodium ions through phospholipid bilayers studied by 23Na-NMR spectroscopy. Riddell FG; Hayer MK Biochim Biophys Acta; 1985 Jul; 817(2):313-7. PubMed ID: 4016108 [TBL] [Abstract][Full Text] [Related]
2. The monensin-mediated transport of Na+ and K+ through phospholipid bilayers studied by 23Na- and 39K-NMR. Riddell FG; Arumugam S; Cox BG Biochim Biophys Acta; 1988 Oct; 944(2):279-84. PubMed ID: 3179291 [TBL] [Abstract][Full Text] [Related]
3. The transport of Na+ and K+ ions through phospholipid bilayers mediated by the antibiotics salinomycin and narasin studied by 23Na- and 39K-NMR spectroscopy. Riddell FG; Tompsett SJ Biochim Biophys Acta; 1990 May; 1024(1):193-7. PubMed ID: 2337616 [TBL] [Abstract][Full Text] [Related]
4. Conductance change in phospholipid bilayer membrane by an electroneutral ionophore, monensin. Inabayashi M; Miyauchi S; Kamo N; Jin T Biochemistry; 1995 Mar; 34(10):3455-60. PubMed ID: 7880839 [TBL] [Abstract][Full Text] [Related]
5. Ionophore properties of cationomycin in large unilamellar vesicles studied by 23Na- and 39K-NMR. Delort AM; Jeminet G; Sareth S; Riddle FG Chem Pharm Bull (Tokyo); 1998 Oct; 46(10):1618-20. PubMed ID: 9810697 [TBL] [Abstract][Full Text] [Related]
6. Surface charge effects upon membrane transport processes: the effects of surface charge on the monensin-mediated transport of lithium ions through phospholipid bilayers studied by 7Li-NMR spectroscopy. Riddell FG; Arumugam S Biochim Biophys Acta; 1988 Nov; 945(1):65-72. PubMed ID: 3179312 [TBL] [Abstract][Full Text] [Related]
7. Cationomycin and monensin partition between serum proteins and erythrocyte membrane: consequences for Na+ and K+ transport and antimalarial activities. Gibot S; Jeminet G; Juillard J; Gumila C; Ancelin ML; Vial H; Delort AM Arch Biochem Biophys; 1999 Mar; 363(2):361-72. PubMed ID: 10068460 [TBL] [Abstract][Full Text] [Related]
8. Conditions modulating the ionic selectivity of transport by monensin examined on Enterococcus hirae (Streptococcus faecalis) by 23Na-NMR and K+ atomic absorption. Rabaste F; Jeminet G; Dauphin G; Delort AM Biochim Biophys Acta; 1992 Jul; 1108(2):177-82. PubMed ID: 1637842 [TBL] [Abstract][Full Text] [Related]
9. Transport of Na+ by monensin across bimolecular lipid membranes. Sandeaux R; Sandeaux J; Gavach C; Brun B Biochim Biophys Acta; 1982 Jan; 684(1):127-32. PubMed ID: 7055549 [TBL] [Abstract][Full Text] [Related]
10. High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na. Pike MM; Simon SR; Balschi JA; Springer CS Proc Natl Acad Sci U S A; 1982 Feb; 79(3):810-4. PubMed ID: 6174981 [TBL] [Abstract][Full Text] [Related]
11. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Antonenko YN; Rokitskaya TI; Huczyński A Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660 [TBL] [Abstract][Full Text] [Related]
12. Unusual behavior of ion transport mediated by polyene antibiotics. Activation energies for the exchange of Na+ ions through liposomal membranes studied by 23Na-NMR spectroscopy. Kimura A; Kuni N; Fujiwara H Chem Pharm Bull (Tokyo); 1997 Mar; 45(3):431-6. PubMed ID: 9085553 [TBL] [Abstract][Full Text] [Related]
13. 7Li and 23Na NMR studies of transmembrane cation transport mediated by ionophore lasalocid A. Juvvadi P; Kalapaty E J Pept Sci; 1998 Feb; 4(1):15-20. PubMed ID: 9523752 [TBL] [Abstract][Full Text] [Related]
14. Ionophoric activity of the antibiotic peptaibol trichorzin PA VI: a 23Na- and 35Cl-NMR study. Duval D; Riddell FG; Rebuffat S; Platzer N; Bodo B Biochim Biophys Acta; 1998 Jul; 1372(2):370-8. PubMed ID: 9675337 [TBL] [Abstract][Full Text] [Related]
15. Monensin stimulates sugar transport in avian erythrocytes. Bihler I; Charles P; Sawh PC Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360 [TBL] [Abstract][Full Text] [Related]
16. Na+ and K+ transport by 4-chlorophenylurethane-monensin in Enterococcus hirae de-energized and energized cells studied by 23Na-NMR and K+ atomic absorption. Rabaste F; Jeminet G; Dauphin G; Delort AM Biochim Biophys Acta; 1993 Nov; 1179(2):166-9. PubMed ID: 8218359 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of glucose transport in skeletal muscle by the sodium ionophore monensin. Bihler I; Sawh PC; Charles P Biochim Biophys Acta; 1985 Nov; 821(1):30-6. PubMed ID: 4063359 [TBL] [Abstract][Full Text] [Related]
18. The Na+-ionophore monensin enhances glucose uptake in mouse thymocytes. Nordenberg J; Stenzel KH; Novogrodsky A Int J Biochem; 1984; 16(7):837-40. PubMed ID: 6468741 [TBL] [Abstract][Full Text] [Related]
19. Ionophore properties of monensin derivatives studied on human erythrocytes by 23Na NMR and K+ and H+ potentiometry: relationship with antimicrobial and antimalarial activities. Rochdi M; Delort AM; Guyot J; Sancelme M; Gibot S; Gourcy JG; Dauphin G; Gumila C; Vial H; Jeminet G J Med Chem; 1996 Jan; 39(2):588-95. PubMed ID: 8558531 [TBL] [Abstract][Full Text] [Related]
20. Studies on the chemical modification of monensin. II. Measurement of sodium ion permeability of monensylamino acids using sodium-23 nuclear magnetic resonance spectroscopy. Nakamura A; Nagai S; Ueda T; Sakakibara J; Hotta Y; Takeya K Chem Pharm Bull (Tokyo); 1989 Sep; 37(9):2330-3. PubMed ID: 2605678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]