BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 4016127)

  • 1. Solvent accessibility to flavin in oxynitrilase.
    Jorns MS
    Biochim Biophys Acta; 1985 Jul; 830(1):30-5. PubMed ID: 4016127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of enzyme-bound 5-deazaflavin with peroxides. Pyrimidine ring contraction via an epoxide intermediate.
    Jorns MS; Ballenger C; Kinney G; Pokora A; Vargo D
    J Biol Chem; 1983 Jul; 258(14):8561-7. PubMed ID: 6134730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of flavin structure and redox state on catalysis by and flavin-pterin energy transfer in Escherichia coli DNA photolyase.
    Chanderkar LP; Jorns MS
    Biochemistry; 1991 Jan; 30(3):745-54. PubMed ID: 1988061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site probes of flavoproteins. Determination of the solvent accessibility of the flavin position 8 for a series of flavoproteins.
    Schopfer LM; Massey V; Claiborne A
    J Biol Chem; 1981 Jul; 256(14):7329-37. PubMed ID: 6894755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site studies of DT-diaphorase employing artificial flavins.
    Tedeschi G; Chen S; Massey V
    J Biol Chem; 1995 Feb; 270(6):2512-6. PubMed ID: 7531691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein.
    Hassan-Abdallah A; Bruckner RC; Zhao G; Jorns MS
    Biochemistry; 2005 May; 44(17):6452-62. PubMed ID: 15850379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 1999 Jun; 38(25):8124-37. PubMed ID: 10387058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of catalysis by the flavoenzyme oxynitrilase.
    Jorns MS
    J Biol Chem; 1979 Dec; 254(23):12145-52. PubMed ID: 500702
    [No Abstract]   [Full Text] [Related]  

  • 9. [Substrate specifity of the flavin enzyme hydroxynitrile lyase (D-oxynitrilase) and mechanism of the reaction catalyzed by the enzyme].
    Butenuth J; Pfeil E
    Hoppe Seylers Z Physiol Chem; 1972 May; 353(5):698-9. PubMed ID: 5069270
    [No Abstract]   [Full Text] [Related]  

  • 10. [On the chemical and biological systematics of osaceae. Study of the flavin system D-oxynitrilase].
    Gerstner E; Mätzke V; Pfeil E
    Naturwissenschaften; 1968 Dec; 55(12):561-3. PubMed ID: 4890063
    [No Abstract]   [Full Text] [Related]  

  • 11. Lys300 plays a major role in the catalytic mechanism of maize polyamine oxidase.
    Polticelli F; Basran J; Faso C; Cona A; Minervini G; Angelini R; Federico R; Scrutton NS; Tavladoraki P
    Biochemistry; 2005 Dec; 44(49):16108-20. PubMed ID: 16331971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of a flavin semiquinone in methanol oxidase.
    Mincey T; Tayrien G; Mildvan AS; Abeles RH
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7099-101. PubMed ID: 6261238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 6-Mercapto-FAD and 6-thiocyanato-FAD as active site probes of phenol hydroxylase.
    Taylor MG; Massey V
    J Biol Chem; 1991 May; 266(13):8281-90. PubMed ID: 2022645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of epoxide intermediates in the reaction of enzyme-bound 5-deazaflavin with peroxides.
    Vargo D; Pokora A; Wang SW; Jorns MS
    J Biol Chem; 1981 Jun; 256(12):6027-33. PubMed ID: 7016865
    [No Abstract]   [Full Text] [Related]  

  • 16. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of solvent effects on the phosphorescence properties of flavins.
    Brunk GR; Martin KA; Nishimura AM
    Biophys J; 1976 Dec; 16(12):1373-84. PubMed ID: 990392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.
    Robbins JM; Souffrant MG; Hamelberg D; Gadda G; Bommarius AS
    Biochemistry; 2017 Jul; 56(29):3800-3807. PubMed ID: 28640638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the covalent flavin linkage in monomeric sarcosine oxidase.
    Hassan-Abdallah A; Zhao G; Jorns MS
    Biochemistry; 2006 Aug; 45(31):9454-62. PubMed ID: 16878980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.