BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 4016750)

  • 1. Effects of structural modifications of antitumor antibiotics (luzopeptins) on the interactions with deoxyribonucleic acid.
    Huang CH; Crooke ST
    Cancer Res; 1985 Aug; 45(8):3768-73. PubMed ID: 4016750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of structural modifications of anti-tumour antibiotics luzopeptins on cell growth and macromolecule biosynthesis.
    Huang CH; Crooke ST
    Anticancer Drug Des; 1986 Apr; 1(2):87-94. PubMed ID: 2453197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular cross-linking of DNA through bifunctional intercalation of an antitumor antibiotic, luzopeptin A (BBM-928A).
    Huang CH; Mirabelli CK; Mong S; Crooke ST
    Cancer Res; 1983 Jun; 43(6):2718-24. PubMed ID: 6303566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of the luzopeptin-DNA complex.
    Zhang XL; Patel DJ
    Biochemistry; 1991 Apr; 30(16):4026-41. PubMed ID: 1850297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of luzopeptins on protein B23 translocation and ribosomal RNA synthesis in HeLa cells.
    Yung BY; Busch H; Chan PK
    Cancer Res; 1986 Feb; 46(2):922-5. PubMed ID: 3940652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding mode of the DNA bisintercalator luzopeptin investigated using atomic force microscopy.
    Berge T; Haken EL; Waring MJ; Henderson RM
    J Struct Biol; 2003 May; 142(2):241-6. PubMed ID: 12713951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA recognition by quinoline antibiotics: use of base-modified DNA molecules to investigate determinants of sequence-specific binding of luzopeptin.
    Bailly C; Crow S; Minnock A; Waring MJ
    Nucleosides Nucleotides Nucleic Acids; 2000 Aug; 19(8):1337-53. PubMed ID: 11097063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the antitumour antibiotic luzopeptin with the hexanucleotide duplex d(5'-GCATGC)2. One-dimensional and two-dimensional n.m.r. studies.
    Searle MS; Hall JG; Denny WA; Wakelin LP
    Biochem J; 1989 Apr; 259(2):433-41. PubMed ID: 2719658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1H- and 13C-n.m.r. studies of the antitumour antibiotic luzopeptin. Resonance assignments, conformation and flexibility in solution.
    Searle MS; Hall JG; Wakelin PG
    Biochem J; 1988 Nov; 256(1):271-8. PubMed ID: 3223903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific binding of luzopeptin to DNA.
    Fox KR; Davies H; Adams GR; Portugal J; Waring MJ
    Nucleic Acids Res; 1988 Mar; 16(6):2489-507. PubMed ID: 3362673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strong binding of luzopeptin to DNA.
    Fox KR; Woolley C
    Biochem Pharmacol; 1990 Mar; 39(5):941-8. PubMed ID: 2310419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercalating, cytotoxic, antitumour activity of 8-chloro and 4-morpholinopyrimido [4',5':4,5]thieno(2,3-b)quinolines.
    Shahabuddin MS; Gopal M; Raghavan SC
    J Photochem Photobiol B; 2009 Jan; 94(1):13-9. PubMed ID: 18945623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neocarzinostatin chromophore. Assignment of spectral properties and structural requirements for binding to DNA.
    Napier MA; Goldberg IH
    Mol Pharmacol; 1983 Mar; 23(2):500-10. PubMed ID: 6220205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA binding to guide the development of tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline derivatives as cytotoxic agents.
    Catoen-Chackal S; Facompré M; Houssin R; Pommery N; Goossens JF; Colson P; Bailly C; Hénichart JP
    J Med Chem; 2004 Jul; 47(14):3665-73. PubMed ID: 15214793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and investigation on the interaction with calf thymus deoxyribonucleic acid of a novel fluorescent probe 7-oxobenzo[b][1,10]phenanthroline-12(7H)-sulfonic acid.
    Guo L; Qiu B; Chen G
    Anal Chim Acta; 2007 Apr; 588(1):123-30. PubMed ID: 17386801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acenaphtho[1,2-b]pyrrole derivatives as new family of intercalators: various DNA binding geometry and interesting antitumor capacity.
    Zhang Z; Yang Y; Zhang D; Wang Y; Qian X; Liu F
    Bioorg Med Chem; 2006 Oct; 14(20):6962-70. PubMed ID: 16828559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA bending and unwinding associated with actinomycin D antibiotics bound to partially overlapping sites on DNA.
    Chen H; Liu X; Patel DJ
    J Mol Biol; 1996 May; 258(3):457-79. PubMed ID: 8642603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel bifunctional acridine-acridinium conjugates: synthesis and study of their chromophore-selective electron-transfer and DNA-binding properties.
    Kuruvilla E; Joseph J; Ramaiah D
    J Phys Chem B; 2005 Nov; 109(46):21997-2002. PubMed ID: 16853857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequence recognition by bispyrazinonaphthalimides antitumor agents.
    Carrasco C; Joubert A; Tardy C; Maestre N; Cacho M; Braña MF; Bailly C
    Biochemistry; 2003 Oct; 42(40):11751-61. PubMed ID: 14529286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and evaluation of 9-anilinothiazolo[5,4-b]quinoline derivatives as potential antitumorals.
    Rodríguez-Loaiza P; Quintero A; Rodríguez-Sotres R; Solano JD; Lira-Rocha A
    Eur J Med Chem; 2004 Jan; 39(1):5-10. PubMed ID: 14987829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.