These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 4017156)

  • 21. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise.
    Gastin PB; Costill DL; Lawson DL; Krzeminski K; McConell GK
    Med Sci Sports Exerc; 1995 Feb; 27(2):255-63. PubMed ID: 7723650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strength training effects on aerobic power and short-term endurance.
    Hickson RC; Rosenkoetter MA; Brown MM
    Med Sci Sports Exerc; 1980; 12(5):336-9. PubMed ID: 7453510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of lactate threshold by respiratory gas exchange measures and blood lactate levels during incremental load work.
    von Duvillard SP; LeMura LM; Bacharach DW; Di Vico P
    J Manipulative Physiol Ther; 1993 Jun; 16(5):312-8. PubMed ID: 8345314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of high-intensity exercise training on the Wlim-Tlim relationship.
    Jenkins DG; Quigley BM
    Med Sci Sports Exerc; 1993 Feb; 25(2):275-82. PubMed ID: 8450733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissociation between VO2max and ventilatory threshold responses to endurance training.
    Gaesser GA; Poole DC; Gardner BP
    Eur J Appl Physiol Occup Physiol; 1984; 53(3):242-7. PubMed ID: 6542858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological differences between professional and elite road cyclists.
    Lucía A; Pardo J; Durántez A; Hoyos J; Chicharro JL
    Int J Sports Med; 1998 Jul; 19(5):342-8. PubMed ID: 9721058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiorespiratory optimal point as a submaximal evaluation tool in endurance athletes: An exploratory study.
    Oyarzo-Aravena A; Arce-Alvarez A; Salazar-Ardiles C; Ramirez-Campillo R; Alvarez C; Toledo C; Izquierdo M; Andrade DC
    Front Physiol; 2023; 14():1087829. PubMed ID: 36860520
    [No Abstract]   [Full Text] [Related]  

  • 29. Modelling inter-individual variability in acute and adaptive responses to interval training: insights into exercise intensity normalisation.
    Bossi AH; Naumann U; Passfield L; Hopker J
    Eur J Appl Physiol; 2024 Apr; 124(4):1201-1216. PubMed ID: 37966510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conventional methods to prescribe exercise intensity are ineffective for exhaustive interval training.
    Bossi AH; Cole D; Passfield L; Hopker J
    Eur J Appl Physiol; 2023 Aug; 123(8):1655-1670. PubMed ID: 36988672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal Function Recovery Strategies Following Marathon in Amateur Runners.
    Hernando C; Hernando C; Panizo N; Collado-Boira E; Folch-Ayora A; Martínez-Navarro I; Hernando B
    Front Physiol; 2022; 13():812237. PubMed ID: 35295572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Mathematical Modeling and Fitting Procedures on the Assessment of Critical Speed and Its Relationship With Aerobic Fitness Parameters.
    Patoz A; Pedrani N; Spicher R; Berchtold A; Borrani F; Malatesta D
    Front Physiol; 2021; 12():613066. PubMed ID: 34135766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical speed estimated by statistically appropriate fitting procedures.
    Patoz A; Spicher R; Pedrani N; Malatesta D; Borrani F
    Eur J Appl Physiol; 2021 Jul; 121(7):2027-2038. PubMed ID: 33811559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using Accelerometry for Evaluating Energy Consumption and Running Intensity Distribution Throughout a Marathon According to Sex.
    Hernando C; Hernando C; Martinez-Navarro I; Collado-Boira E; Panizo N; Hernando B
    Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32859029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quick Recovery of Renal Alterations and Inflammatory Activation after a Marathon.
    Panizo González N; Reque Santivañez JE; Hernando Fuster B; Collado Boira EJ; Martinez-Navarro I; Chiva Bartoll Ó; Hernando Domingo C
    Kidney Dis (Basel); 2019 Oct; 5(4):259-265. PubMed ID: 31768383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods to determine aerobic endurance.
    Bosquet L; Léger L; Legros P
    Sports Med; 2002; 32(11):675-700. PubMed ID: 12196030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Significance of the velocity at VO2max and time to exhaustion at this velocity.
    Billat LV; Koralsztein JP
    Sports Med; 1996 Aug; 22(2):90-108. PubMed ID: 8857705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relationship between power output and endurance: a brief review.
    Morton RH; Hodgson DJ
    Eur J Appl Physiol Occup Physiol; 1996; 73(6):491-502. PubMed ID: 8817118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-invasive prediction of blood lactate response to constant power outputs from incremental exercise tests.
    Sullivan CS; Casaburi R; Storer TW; Wasserman K
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):349-54. PubMed ID: 8549579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relationship between the ventilation and lactate thresholds following normal, low and high carbohydrate diets.
    McLellan TM; Gass GC
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):568-76. PubMed ID: 2731528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.