These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4017545)

  • 21. Long-chain-acyl-CoA synthetase and very-long-chain-acyl-CoA synthetase activities in peroxisomes and microsomes from rat liver. An enzymological study.
    Lageweg W; Wanders RJ; Tager JM
    Eur J Biochem; 1991 Mar; 196(2):519-23. PubMed ID: 2007410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dietary conjugated linoleic acid alters long chain polyunsaturated fatty acid metabolism in brain and liver of neonatal pigs.
    Lin X; Bo J; Oliver SA; Corl BA; Jacobi SK; Oliver WT; Harrell RJ; Odle J
    J Nutr Biochem; 2011 Nov; 22(11):1047-54. PubMed ID: 21216581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro conversion of saturated to monounsaturated fatty acid by Ehrlich ascites cells.
    Mercuri O; De Tomás ME; de Antueno RJ
    Lipids; 1981 Dec; 16(12):893-6. PubMed ID: 7329210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of d-galactosamine hydrochloride on lipids and their fatty acid composition in plasma and liver of guinea pigs.
    Gallenkamp H; Bartsch GG; Löhr JP; Brachtel D; Richter E
    Acta Hepatogastroenterol (Stuttg); 1976 Feb; 23(1):3-9. PubMed ID: 1258600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of hepatic phosphatidylcholine synthesis in the developing guinea pig: contributions of acyl remodelling and of N-methylation of phosphatidylethanolamine.
    Burdge GC; Kelly FJ; Postle AD
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):67-73. PubMed ID: 8439299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthetic pathways of polyunsaturated fatty acids.
    Sprecher H
    Adv Exp Med Biol; 1977; 83():35-50. PubMed ID: 920469
    [No Abstract]   [Full Text] [Related]  

  • 27. The influence of dietary alterations, fasting and competitive interactions on the microsomal chain elongation of fatty acids.
    Sprecher H
    Biochim Biophys Acta; 1974 Aug; 360(2):113-23. PubMed ID: 4421310
    [No Abstract]   [Full Text] [Related]  

  • 28. The effect of isomeric trans-18:1 acids on the desaturation of palmitic, linoleic and eicosa-8,11,14-trienoic acids by rat liver microsomes.
    Mahfouz MM; Johnson S; Holman RT
    Lipids; 1980 Feb; 15(2):100-7. PubMed ID: 7374357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chain elongation in the formation of polyunsaturated fatty acids by brain: some properties of the microsomal system.
    Cook HW
    Arch Biochem Biophys; 1982 Apr; 214(2):695-704. PubMed ID: 7092216
    [No Abstract]   [Full Text] [Related]  

  • 30. A low degree of fatty acid unsaturation leads to high resistance to lipid peroxidation in mitochondria and microsomes of different organs of quail (Coturnix coturnix japonica).
    Gutiérrez AM; Reboredo GR; Mosca SM; Catalá A
    Mol Cell Biochem; 2006 Jan; 282(1-2):109-15. PubMed ID: 16317518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conjugation of pentachlorophenol to palmitic acid by liver microsomes.
    Leighty EG; Fentiman AF
    Bull Environ Contam Toxicol; 1982 Mar; 28(3):329-33. PubMed ID: 7082874
    [No Abstract]   [Full Text] [Related]  

  • 32. Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids.
    Garg ML; Sebokova E; Thomson AB; Clandinin MT
    Biochem J; 1988 Jan; 249(2):351-6. PubMed ID: 3342019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation.
    Park HG; Kothapalli KSD; Park WJ; DeAllie C; Liu L; Liang A; Lawrence P; Brenna JT
    Biochim Biophys Acta; 2016 Feb; 1861(2):91-97. PubMed ID: 26597785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies in Tetrahymena membranes substrates for desaturation of fatty acyl chains in Tetrahymena pyriformis microsomes.
    Nagao S; Fukushima H; Nozawa Y
    Biochim Biophys Acta; 1978 Aug; 530(2):165-74. PubMed ID: 667090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arachidoyl- and arachidonoyl-CoA elongation mechanism in swine cerebral microsomes.
    Yoshida S; Takeshita M
    Biochim Biophys Acta; 1984 Aug; 795(1):137-46. PubMed ID: 6466693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chain elongation of trans-octadecenoic acid isomers in rat liver microsomes.
    Kameda K; Valicenti AJ; Holman RT
    Biochim Biophys Acta; 1980 Apr; 618(1):13-7. PubMed ID: 7378427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium.
    Wada M; Fukunaga N; Sasaki S
    J Bacteriol; 1989 Aug; 171(8):4267-71. PubMed ID: 2753856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of (I- 14 C)palmitic acid in the developing brain: persistence of radioactivity in the carboxyl carbon.
    Dhopeshwarkar GA; Subramanian C; Mead JF
    Biochim Biophys Acta; 1973 Feb; 296(2):257-64. PubMed ID: 4688435
    [No Abstract]   [Full Text] [Related]  

  • 39. [Desaturation of linoleic acid by liver and brain microsomes of growing rats].
    Strouvé-Vallet C; Pascaud M
    Biochimie; 1971; 53(5):699-703. PubMed ID: 5123896
    [No Abstract]   [Full Text] [Related]  

  • 40. Cold resistance of the brain during hibernation: the role of stearyl CoA desaturase in brain and liver as the source for monoenes.
    Goldman SS
    J Neurochem; 1978 Feb; 30(2):397-400. PubMed ID: 24087
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.