These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 4017627)
1. Progress toward the establishment of nuclear magnetic resonance measurements as an index of in vivo lens functional integrity. Farnsworth PN; Schleich T Curr Eye Res; 1985 Mar; 4(3):291-7. PubMed ID: 4017627 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus and proton magnetic resonance spectroscopic studies on the relationship between transparency and glucose metabolism in the rabbit lens. Williams WF; Austin CD; Farnsworth PN; Groth-Vasselli B; Willis JA; Schleich T Exp Eye Res; 1988 Jul; 47(1):97-112. PubMed ID: 2842177 [TBL] [Abstract][Full Text] [Related]
3. The effect of prolonged elevated glucose levels on the phosphate metabolism of the rabbit lens in perfused organ culture. Willis JA; Schleich T Exp Eye Res; 1986 Sep; 43(3):329-41. PubMed ID: 3780877 [TBL] [Abstract][Full Text] [Related]
4. Surface coil phosphorus-31 nuclear magnetic resonance studies of the intact eye. Schleich T; Matson GB; Willis JA; Acosta G; Serdahl C; Campbell P; Garwood M Exp Eye Res; 1985 Mar; 40(3):343-55. PubMed ID: 4065231 [TBL] [Abstract][Full Text] [Related]
5. 13C NMR spectroscopic measurement of glutathione synthesis and antioxidant metabolism in the intact ocular lens. Willis JA; Schleich T Biochem Biophys Res Commun; 1992 Jul; 186(2):931-5. PubMed ID: 1497676 [TBL] [Abstract][Full Text] [Related]
6. Lenticular energy metabolism during exogenous calcium deprivation and during recovery: effects of dextran-40. Glonek T; Kopp SJ; Greiner JV; Sanders DR Exp Eye Res; 1985 Feb; 40(2):169-78. PubMed ID: 2579839 [TBL] [Abstract][Full Text] [Related]
7. 13C-nuclear magnetic resonance studies of sugar cataractogenesis in the single intact rabbit lens. González RG; Willis J; Aguayo J; Campbell P; Chylack LT; Schleich T Invest Ophthalmol Vis Sci; 1982 Jun; 22(6):808-11. PubMed ID: 7076426 [TBL] [Abstract][Full Text] [Related]
8. The utilization of 13C and 31P nuclear magnetic resonance spectroscopy in the study of the sorbitol pathway and aldose reductase inhibition in intact rabbit lenses. Williams WF; Odom JD Exp Eye Res; 1987 Jun; 44(6):717-30. PubMed ID: 3115803 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus nuclear magnetic resonance and ocular metabolism. Greiner JV; Kopp SJ; Glonek T Surv Ophthalmol; 1985; 30(3):189-202. PubMed ID: 3909470 [TBL] [Abstract][Full Text] [Related]
10. Longitudinal (T1) relaxation times of phosphorus metabolites in the bovine and rabbit lens. Schleich T; Willis JA; Matson GB Exp Eye Res; 1984 Oct; 39(4):455-68. PubMed ID: 6499960 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus-31 NMR analysis of dynamic energy metabolism in intact crystalline lens treated with ouabain: phosphorylated metabolites. Greiner JV; Kopp SJ; Glonek T Ophthalmic Res; 1985; 17(5):269-78. PubMed ID: 4069565 [TBL] [Abstract][Full Text] [Related]
12. Vitamin C metabolomic mapping in the lens with 6-deoxy-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy. Satake M; Dmochowska B; Nishikawa Y; Madaj J; Xue J; Guo Z; Reddy DV; Rinaldi PL; Monnier VM Invest Ophthalmol Vis Sci; 2003 May; 44(5):2047-58. PubMed ID: 12714643 [TBL] [Abstract][Full Text] [Related]
13. Analysis of diabetic cataractogenesis using chemical-shift nuclear magnetic resonance microscopy. Cheng HM; Aguayo JB; Moore GJ; Mattingly M Magn Reson Med; 1991 Jan; 17(1):62-8. PubMed ID: 2067407 [TBL] [Abstract][Full Text] [Related]
14. Organophosphates of the crystalline lens: a nuclear magnetic resonance spectroscopic study. Greiner JV; Kopp SJ; Sanders DR; Glonek T Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):700-13. PubMed ID: 7298274 [TBL] [Abstract][Full Text] [Related]
15. 31P nuclear magnetic resonance and laser spectroscopic analyses of lens transparency during calcium-induced opacification. Beaulieu CF; Clark JI Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1339-47. PubMed ID: 2365564 [TBL] [Abstract][Full Text] [Related]
16. Oxidative-stress induced protein glutathione mixed-disulfide formation in the ocular lens. Willis JA; Schleich T Biochim Biophys Acta; 1996 Aug; 1313(1):20-8. PubMed ID: 8781545 [TBL] [Abstract][Full Text] [Related]
17. From E.M. microprobe analysis to NMRD studies of the lens. Clark JI; Beaulieu CF Lens Eye Toxic Res; 1989; 6(4):523-39. PubMed ID: 2562119 [TBL] [Abstract][Full Text] [Related]
18. Differential protein expression in lens epithelial whole-mounts and lens epithelial cell cultures. Ong MD; Payne DM; Garner MH Exp Eye Res; 2003 Jul; 77(1):35-49. PubMed ID: 12823986 [TBL] [Abstract][Full Text] [Related]
20. Regulatory effect of chrysin on expression of lenticular calcium transporters, calpains, and apoptotic-cascade components in selenite-induced cataract. Sundararajan M; Thomas PA; Teresa PA; Anbukkarasi M; Geraldine P Mol Vis; 2016; 22():401-23. PubMed ID: 27168717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]