These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 4017633)
1. Steady state voltages in the frog lens. Mathias RT; Rae JL Curr Eye Res; 1985 Apr; 4(4):421-30. PubMed ID: 4017633 [TBL] [Abstract][Full Text] [Related]
2. Regional distribution of the Na(+) and K(+) currents around the crystalline lens of rabbit. Candia OA; Zamudio AC Am J Physiol Cell Physiol; 2002 Feb; 282(2):C252-62. PubMed ID: 11788336 [TBL] [Abstract][Full Text] [Related]
3. The localization of transport properties in the frog lens. Mathias RT; Rae JL; Ebihara L; McCarthy RT Biophys J; 1985 Sep; 48(3):423-34. PubMed ID: 3876116 [TBL] [Abstract][Full Text] [Related]
4. Spatial variations in membrane properties in the intact rat lens. Baldo GJ; Mathias RT Biophys J; 1992 Aug; 63(2):518-29. PubMed ID: 1420894 [TBL] [Abstract][Full Text] [Related]
5. Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium. Gao J; Sun X; Yatsula V; Wymore RS; Mathias RT J Membr Biol; 2000 Nov; 178(2):89-101. PubMed ID: 11083898 [TBL] [Abstract][Full Text] [Related]
6. Contribution of an electrogenic pump to the electrical characteristics of frog lens membranes. Ducan G; Delamere NA; Paterson CA; Neville MC Exp Eye Res; 1980 Jan; 30(1):105-7. PubMed ID: 7363962 [No Abstract] [Full Text] [Related]
8. Steady-state voltages, ion fluxes, and volume regulation in syncytial tissues. Mathias RT Biophys J; 1985 Sep; 48(3):435-48. PubMed ID: 2412605 [TBL] [Abstract][Full Text] [Related]
9. Measurement of steady currents around the frog lens. Parmelee JT Exp Eye Res; 1986 May; 42(5):433-41. PubMed ID: 3487463 [TBL] [Abstract][Full Text] [Related]
10. Ion concentrations, fluxes and electrical properties of the embryonic chicken lens. Bassnett S; Becker TM; Beebe DC Exp Eye Res; 1992 Aug; 55(2):215-24. PubMed ID: 1426057 [TBL] [Abstract][Full Text] [Related]
11. Origins of the transient anterior-posterior asymmetry in the frog lens fiber potential. Murata T; Okajima Y; Akaike N Comp Biochem Physiol A Comp Physiol; 1984; 77(2):287-91. PubMed ID: 6142797 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of ion transport across the choroid plexus. Wright EM J Physiol; 1972 Oct; 226(2):545-71. PubMed ID: 4538945 [TBL] [Abstract][Full Text] [Related]
13. Electrical properties of structural components of the crystalline lens. Mathias RT; Rae JL; Eisenberg RS Biophys J; 1979 Jan; 25(1):181-201. PubMed ID: 262384 [TBL] [Abstract][Full Text] [Related]
14. A computer model of lens structure and function predicts experimental changes to steady state properties and circulating currents. Vaghefi E; Liu N; Donaldson PJ Biomed Eng Online; 2013 Aug; 12():85. PubMed ID: 23988187 [TBL] [Abstract][Full Text] [Related]
15. Na(+)-Cl(-)-K+ cotransport activity in cultured bovine lens epithelial cells and its absence in intact bovine lenses. Alvarez LJ; Candia OA Exp Eye Res; 1994 Apr; 58(4):479-90. PubMed ID: 7925684 [TBL] [Abstract][Full Text] [Related]
16. Transport properties of the lens. Mathias RT; Rae JL Am J Physiol; 1985 Sep; 249(3 Pt 1):C181-90. PubMed ID: 2994483 [TBL] [Abstract][Full Text] [Related]
18. The pump and leak steady-state concept with a variety of regulated leak pathways. Hoffmann EK J Membr Biol; 2001 Dec; 184(3):321-30. PubMed ID: 11891558 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical potentials in frog skin: inferences for electrical and mechanistic models. Helman SI Fed Proc; 1979 Dec; 38(13):2743-50. PubMed ID: 510562 [TBL] [Abstract][Full Text] [Related]
20. Functional Na+/K+ pump in rat dorsal root ganglia neurons. Dobretsov M; Hastings SL; Stimers JR Neuroscience; 1999; 93(2):723-9. PubMed ID: 10465456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]