BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4018079)

  • 1. Creatine phosphokinase: isoenzymes in Torpedo marmorata.
    Witzemann V
    Eur J Biochem; 1985 Jul; 150(1):201-10. PubMed ID: 4018079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase activity in the Torpedo electrocyte and in the nonreceptor, peripheral v proteins from acetylcholine receptor-rich membranes.
    Barrantes FJ; Mieskes G; Wallimann T
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5440-4. PubMed ID: 6577436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine kinase isoenzymes in Torpedo californica: absence of the major brain isoenzyme from nicotinic acetylcholine receptor membranes.
    Gysin R; Yost B; Flanagan SD
    Biochemistry; 1986 Mar; 25(6):1271-8. PubMed ID: 3964676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a 43-kDa polypeptide associated with acetylcholine receptor-enriched membranes as MM creatine kinase.
    Perryman MB; Knell JD; Ifegwu J; Roberts R
    J Biol Chem; 1985 Aug; 260(16):9399-404. PubMed ID: 4019480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of acetylcholine receptor membrane-associated (nonreceptor v2-protein) and soluble electrocyte creatine kinases.
    Barrantes FJ; Braceras A; Caldironi HA; Mieskes G; Moser H; Toren EC; Roque ME; Wallimann T; Zechel A
    J Biol Chem; 1985 Mar; 260(5):3024-34. PubMed ID: 3882704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes.
    Wallimann T; Walzthöny D; Wegmann G; Moser H; Eppenberger HM; Barrantes FJ
    J Cell Biol; 1985 Apr; 100(4):1063-72. PubMed ID: 3884630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation-dependent changes of nicotinic synapse-associated proteins.
    Witzemann V; Schmid D; Boustead C
    Eur J Biochem; 1983 Mar; 131(2):235-45. PubMed ID: 6832148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete nucleotide sequence of Torpedo marmorata mRNA coding for the 43,000-dalton nu 2 protein: muscle-specific creatine kinase.
    Giraudat J; Devillers-Thiery A; Perriard JC; Changeux JP
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7313-7. PubMed ID: 6095285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and partial characterization of creatine kinase from electric organ of Electrophorus electricus (L.).
    Batista e Silva CM; Nunes Tavares N; Giovanni-De-Simone S; Nery da Matta A; Hassón-Voloch A
    Int J Biochem Cell Biol; 2000 Apr; 32(4):427-33. PubMed ID: 10762068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in the translatable mRNA for acetylcholine receptor during embryonic development of Torpedo ocellata electric organ.
    Soreq H; Bartfeld D; Parvari R; Fuchs S
    FEBS Lett; 1982 Mar; 139(1):32-40. PubMed ID: 6122602
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis in vitro of precursors of the catalytic subunits of acetylcholinesterase from Torpedo marmorata and Electrophorus electricus.
    Sikorav JL; Grassi J; Bon S
    Eur J Biochem; 1984 Dec; 145(3):519-24. PubMed ID: 6150849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of acetylcholinesterase molecular forms in brain, nerve and muscle tissue of Torpedo marmorata.
    Witzemann V; Boustead C
    Neurosci Lett; 1981 Nov; 26(3):313-8. PubMed ID: 7322442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification, characterization and cellular localization of 5'-nucleotidase from Torpedo electric organ.
    Grondal EJ; Zimmermann H
    Biochem J; 1987 Aug; 245(3):805-10. PubMed ID: 2822031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detergent-soluble form of acetylcholinesterase in the electric organ of electric rays. Its isolation, characterization and monoclonal antibodies.
    Sakai M; Saisu H; Koshigoe N; Abe T
    Eur J Biochem; 1985 Apr; 148(1):197-206. PubMed ID: 3979394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in acetylcholinesterase molecular forms during the embryonic development of Torpedo marmorata.
    Witzemann V; Boustead C
    J Neurochem; 1982 Sep; 39(3):747-55. PubMed ID: 7097281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of a peptidyl dipeptidase resembling angiotensin converting enzyme from the electric organ of Torpedo marmorata.
    Turner AJ; Hryszko J; Hooper NM; Dowdall MJ
    J Neurochem; 1987 Mar; 48(3):910-6. PubMed ID: 3027262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactive monomeric acetylcholinesterase in the low-salt-soluble extract of the electric organ from Torpedo marmorata.
    Stieger S; Brodbeck U; Witzemann V
    J Neurochem; 1987 Aug; 49(2):460-7. PubMed ID: 3598580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the amount of a 34K Ca2+-dependent membrane binding protein (calelectrin).
    Saitoh T; Miret O
    J Neurochem; 1987 Mar; 48(3):745-51. PubMed ID: 2433394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase from the electric organ of Electrophorus electricus (L.)--isozyme analysis.
    Carneiro LH; Hassón-Voloch A
    Int J Biochem; 1983; 15(1):111-4. PubMed ID: 6825898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural similarities between acetylcholine receptors from fish electric organs and mammalian muscle.
    Gullick WJ; Lindstrom JM
    Biochemistry; 1982 Sep; 21(19):4563-9. PubMed ID: 7138815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.