BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4018390)

  • 1. Flavin-dependent hydroxylases.
    Müller F
    Biochem Soc Trans; 1985 Apr; 13(2):443-7. PubMed ID: 4018390
    [No Abstract]   [Full Text] [Related]  

  • 2. Reaction mechanism of flavin-dependent hydroxylation.
    Visser CM
    Naturwissenschaften; 1983 Aug; 70(8):412-3. PubMed ID: 6633666
    [No Abstract]   [Full Text] [Related]  

  • 3. Analysis of the active site of the flavoprotein p-hydroxybenzoate hydroxylase and some ideas with respect to its reaction mechanism.
    Schreuder HA; Hol WG; Drenth J
    Biochemistry; 1990 Mar; 29(12):3101-8. PubMed ID: 2337581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling of the substrate monooxygenation and reduced pyridine nucleotide oxidation activities of salicylate hydroxylase by flavins.
    Tu SC; Romero FA; Wang LH
    Arch Biochem Biophys; 1981 Jul; 209(2):423-32. PubMed ID: 7294803
    [No Abstract]   [Full Text] [Related]  

  • 5. Reaction of 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase with hydrogen peroxide. Formation of a covalent flavin-protein linkage.
    Claiborne A; Hemmerich P; Massey V; Lawton R
    J Biol Chem; 1983 May; 258(9):5433-9. PubMed ID: 6853525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD.
    Entsch B; Husain M; Ballou DP; Massey V; Walsh C
    J Biol Chem; 1980 Feb; 255(4):1420-9. PubMed ID: 6766449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodehalogenation of 7- and 8-halogen-substituted flavins. Photochemistry of the reduced flavin chromophore.
    Massey V; Husain M; Hemmerich P
    J Biol Chem; 1980 Feb; 255(4):1393-8. PubMed ID: 7354036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the structure of flavin-oxygen intermediates involved in enzymatic reactions.
    Ghisla S; Entsch B; Massey V; Husein M
    Eur J Biochem; 1977 Jun; 76(1):139-48. PubMed ID: 18348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of an FAD-dependent oxygenase with free flavins: a new mode of uncoupling in flavoprotein oxygenases.
    Kishore GM; Snell EE
    Biochem Biophys Res Commun; 1979 Mar; 87(2):518-23. PubMed ID: 220977
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular modeling reveals the possible importance of a carbonyl oxygen binding pocket for the catalytic mechanism of p-hydroxybenzoate hydroxylase.
    Schreuder HA; Hol WG; Drenth J
    J Biol Chem; 1988 Mar; 263(7):3131-6. PubMed ID: 3343242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the stable enzyme-substrate complex of p-hydroxybenzoate hydroxylase. Evidences for the proton uptake from the substrate.
    Shoun H; Beppu T; Arima K
    J Biol Chem; 1979 Feb; 254(3):899-904. PubMed ID: 33179
    [No Abstract]   [Full Text] [Related]  

  • 13. Tuning of p
    Pitsawong W; Chenprakhon P; Dhammaraj T; Medhanavyn D; Sucharitakul J; Tongsook C; van Berkel WJH; Chaiyen P; Miller AF
    J Biol Chem; 2020 Mar; 295(12):3965-3981. PubMed ID: 32014994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unifying concepts in flavin-dependent catalysis.
    Vervoort J; Rietjens IM
    Biochem Soc Trans; 1996 Feb; 24(1):127-30. PubMed ID: 8674612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntheses and applications of flavin analogs as active site probes for flavoproteins.
    Murthy YV; Massey V
    Methods Enzymol; 1997; 280():436-60. PubMed ID: 9211339
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation-reduction potential studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens.
    Williamson G; Edmondson DE; Müller F
    Biochim Biophys Acta; 1988 Apr; 953(3):258-62. PubMed ID: 3128330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mobile flavin of 4-OH benzoate hydroxylase.
    Gatti DL; Palfey BA; Lah MS; Entsch B; Massey V; Ballou DP; Ludwig ML
    Science; 1994 Oct; 266(5182):110-4. PubMed ID: 7939628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism of flavin-dependent hydroxylation. Evolution of a non-imitable enzyme.
    Visser CM
    Eur J Biochem; 1983 Oct; 135(3):543-8. PubMed ID: 6617648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida.
    Vervoort J; Van Berkel WJ; Müller F; Moonen CT
    Eur J Biochem; 1991 Sep; 200(3):731-8. PubMed ID: 1915345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rate-limiting conformational change of the flavin in p-hydroxybenzoate hydroxylase is necessary for ligand exchange and catalysis: studies with 8-mercapto- and 8-hydroxy-flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 2001 Jan; 40(4):1091-101. PubMed ID: 11170433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.