BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4019066)

  • 1. Dose effects of halothane on sensory evoked responses obtained from the cortex, reticular formation and central gray.
    Prasad CM; Pardo L; Rigor BM; Dafny N
    Int J Neurosci; 1985 Jul; 27(1-2):91-100. PubMed ID: 4019066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged daily inhalation of halothane modifies the dose-response pattern to acute administration of halothane. An electrophysiological study.
    Fuller GN; Rigor BM; Wiggins RC; Dafny N
    Neuropharmacology; 1985 Nov; 24(11):1033-8. PubMed ID: 4080102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of fluothane on the reticular formation of the mesencephalon and the cerebral cortex].
    Plekhotkina SI
    Biull Eksp Biol Med; 1970 Aug; 70(8):56-60. PubMed ID: 5492875
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of morphine on sensory-evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, and pineal body.
    Dafny N; Marchand J; McClung R; Salamy J; Sands S; Wachtendorf H; Burks TF
    J Neurosci Res; 1980; 5(5):399-412. PubMed ID: 7441794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of iontophoretic application of convulsants on the sensory responses of neurons in the brain-stem reticular formation.
    Faingold CL; Hoffmann WE; Caspary DM
    Electroencephalogr Clin Neurophysiol; 1984 Jul; 58(1):55-64. PubMed ID: 6203703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does chronic halothane exposure alter brain electrical activity? Sensory evoked potentials recorded from cortex, diencephalon, and mesencephalon in freely behaving rats.
    Fuller GN; Rigor BM; Wiggins RC; Dafny N
    Subst Alcohol Actions Misuse; 1980; 1(1):35-42. PubMed ID: 7323942
    [No Abstract]   [Full Text] [Related]  

  • 7. Anesthetics block excitation with various effects on inhibition in MRF neurons.
    Shimoji K; Fujioka H; Ebata T
    Brain Res; 1984 Mar; 295(1):190-3. PubMed ID: 6713175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of morphine-induced cortical excitation on somatosensory responses evoked in the periaqueductal grey matter.
    Hernandez A; Neira S; Soto-Moyano R
    Eur J Pharmacol; 1985 Sep; 115(2-3):305-8. PubMed ID: 4065211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of isoflurane and halothane on the auditory and somatosensory evoked potentials].
    Bimar-Blanc MC; Dejode JM; Bimar J
    Ann Fr Anesth Reanim; 1988; 7(4):279-88. PubMed ID: 3059851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence and tolerance: multiunit recording from central gray, mesencephalic reticular formation, and medial thalamus in freely behaving rats.
    Dafny N; Rigor BM; Burks TF
    Exp Neurol; 1980 May; 68(2):217-27. PubMed ID: 7363992
    [No Abstract]   [Full Text] [Related]  

  • 11. On the site of pentylenetetrazol-induced enhancement of auditory responses of the reticular formation: localized cooling and electrical stimulation studies.
    Faingold CL; Hoffmann WE; Caspary DM
    Neuropharmacology; 1983 Aug; 22(8):961-70. PubMed ID: 6621826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dishabituation of mesencephalic reticular neurons by anesthetics.
    Shimoji K; Matsuki M; Shimizu H; Maruyama Y; Aida S
    Anesthesiology; 1977 Oct; 47(4):349-52. PubMed ID: 197860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation.
    Mohrland JS; Gebhart GF
    Brain Res; 1980 Nov; 201(1):23-37. PubMed ID: 6251951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of halothane on sensory evoked potentials].
    Miyamoto T; Ryu H; Yokoyama T; Uemura K; Nakajima S; Matsuda I; Ikeda K
    No To Shinkei; 1986 Jul; 38(7):639-46. PubMed ID: 3756030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute effects of alcohol on photic evoked potentials of rats: lateral geniculate nucleus and reticular formation.
    Hetzler BE; Wiesman JM; Dobbs CM; Oaklay KE
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():483-7. PubMed ID: 6634858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of reticular and cochlear multiple unit activity with auditory evoked responses during various stages induced by anesthetic agents. II.
    Mori K; Winters WD; Spooner CE
    Electroencephalogr Clin Neurophysiol; 1968 Mar; 24(3):242-8. PubMed ID: 4170217
    [No Abstract]   [Full Text] [Related]  

  • 17. Evoked potentials during isoflurane anaesthesia.
    Sebel PS; Ingram DA; Flynn PJ; Rutherfoord CF; Rogers H
    Br J Anaesth; 1986 Jun; 58(6):580-5. PubMed ID: 3707793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cocaine on sensory evoked potentials recorded from hypothalamus and limbic structures.
    Dafny N; Gonzalez LP; Altshuler HL
    Prog Neuropsychopharmacol; 1979; 3(4):353-60. PubMed ID: 400991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The divergent actions of volatile anaesthetics on background neuronal activity and reactive capability in the central nervous system in cats.
    Ogawa T; Shingu K; Shibata M; Osawa M; Mori K
    Can J Anaesth; 1992 Oct; 39(8):862-72. PubMed ID: 1288911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of ethanol on photic and acoustic evoked potentials in the reticular formation of rats.
    Hetzler BE; Drake CT; McLarty LJ
    Alcohol Alcohol Suppl; 1987; 1():703-7. PubMed ID: 3426752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.