These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 4019377)
1. Atomic absorption spectrophotometric determination of cobalt in foods. Barberá R; Farré R; Montoro R J Assoc Off Anal Chem; 1985; 68(3):511-3. PubMed ID: 4019377 [TBL] [Abstract][Full Text] [Related]
2. Atomic absorption spectrophotometric determination of chromium in foods. Farré R; Lagarda MJ; Montoro R J Assoc Off Anal Chem; 1986; 69(5):876-9. PubMed ID: 3771462 [TBL] [Abstract][Full Text] [Related]
3. Electrothermal atomic absorption spectrometric-determination of cobalt in human serum and urine. Todorovska N; Karadjova I; Arpadjan S; Stafilov T Acta Pharm; 2003 Jun; 53(2):83-90. PubMed ID: 14764242 [TBL] [Abstract][Full Text] [Related]
4. Screening method for determination of high levels of cadmium, lead, and copper in foods by polarized Zeeman atomic absorption spectrometry using discrete nebulization technique. Saito I; Oshima H; Kawamura N; Yamada M J Assoc Off Anal Chem; 1988; 71(4):829-32. PubMed ID: 3417611 [TBL] [Abstract][Full Text] [Related]
5. Improvements in cobalt determination by thermospray flame furnace atomic absorption spectrometry using an on-line derivatization strategy. Matos GD; Arruda MA Talanta; 2008 Jul; 76(2):475-8. PubMed ID: 18585309 [TBL] [Abstract][Full Text] [Related]
6. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry. Tuzen M; Soylak M; Citak D; Ferreira HS; Korn MG; Bezerra MA J Hazard Mater; 2009 Mar; 162(2-3):1041-5. PubMed ID: 18620809 [TBL] [Abstract][Full Text] [Related]
7. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS). Bidabadi MS; Dadfarnia S; Shabani AM J Hazard Mater; 2009 Jul; 166(1):291-6. PubMed ID: 19117672 [TBL] [Abstract][Full Text] [Related]
8. Total arsenic in foods after sequential wet digestion, dry ashing, coprecipitation with ammonium pyrrolidine dithiocarbamate, and graphite-furnace atomic absorption spectrometry. Dabeka RW; Lacroix GM J Assoc Off Anal Chem; 1987; 70(5):866-70. PubMed ID: 3680127 [TBL] [Abstract][Full Text] [Related]
9. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Jiang H; Qin Y; Hu B Talanta; 2008 Feb; 74(5):1160-5. PubMed ID: 18371765 [TBL] [Abstract][Full Text] [Related]
10. Chloride determination in foods with ion-selective electrode after isolation as hydrogen chloride. Cerklewski FL; Ridlington JW J Assoc Off Anal Chem; 1987; 70(5):924-6. PubMed ID: 3680135 [TBL] [Abstract][Full Text] [Related]
11. Development of a new sequential injection in-line cloud point extraction system for flame atomic absorption spectrometric determination of manganese in food samples. Lemos VA; Baliza PX; de Carvalho AL; Oliveira RV; Teixeira LS; Bezerra MA Talanta; 2008 Oct; 77(1):388-93. PubMed ID: 18804650 [TBL] [Abstract][Full Text] [Related]
12. Direct determination of iron and manganese in wine using the reference element technique and fast sequential multi-element flame atomic absorption spectrometry. Ferreira SL; Souza AS; Brandao GC; Ferreira HS; dos Santos WN; Pimentel MF; Vale MG Talanta; 2008 Jan; 74(4):699-702. PubMed ID: 18371696 [TBL] [Abstract][Full Text] [Related]
13. Dry ashing, hydride generation atomic absorption spectrometric determination of arsenic and selenium in foods. Tam GK; Lacroix G J Assoc Off Anal Chem; 1982 May; 65(3):647-50. PubMed ID: 7096247 [TBL] [Abstract][Full Text] [Related]
14. A chemometric approach to the comparison of different sample treatments for metals determination by atomic absorption spectroscopy in aceto Balsamico tradizionale di Modena. Cocchi M; Franchini G; Manzini D; Manfredini M; Marchetti A; Ulrici A J Agric Food Chem; 2004 Jun; 52(13):4047-56. PubMed ID: 15212447 [TBL] [Abstract][Full Text] [Related]
15. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent. Yang G; Fen W; Lei C; Xiao W; Sun H J Hazard Mater; 2009 Feb; 162(1):44-9. PubMed ID: 18562094 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous coprecipitation of lead, cobalt, copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxide prior to their flame atomic absorption spectrometric determination. Citak D; Tuzen M; Soylak M Food Chem Toxicol; 2009 Sep; 47(9):2302-7. PubMed ID: 19539005 [TBL] [Abstract][Full Text] [Related]
17. Innovations in atomic absorption spectrophotometry with electrothermal atomization for determining lead in foods. Rains TC; Rush TA; Butler TA J Assoc Off Anal Chem; 1982 Jul; 65(4):994-8. PubMed ID: 7118809 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of various digestion procedures for trace element contents of some food materials. Demirel S; Tuzen M; Saracoglu S; Soylak M J Hazard Mater; 2008 Apr; 152(3):1020-6. PubMed ID: 17804163 [TBL] [Abstract][Full Text] [Related]
19. Development of a cloud-point extraction method for copper and nickel determination in food samples. Lemos VA; Santos MS; David GT; Maciel MV; Bezerra Mde A J Hazard Mater; 2008 Nov; 159(2-3):245-51. PubMed ID: 18353551 [TBL] [Abstract][Full Text] [Related]
20. A simple spectrophotometric method for the determination of cobalt in industrial, environmental, biological and soil samples using bis(salicylaldehyde)orthophenylenediamine. Ahmed MJ; Uddin MN Chemosphere; 2007 May; 67(10):2020-7. PubMed ID: 17215023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]