These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 4019407)

  • 1. Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii.
    Parke D; Rivelli M; Ornston LN
    J Bacteriol; 1985 Aug; 163(2):417-22. PubMed ID: 4019407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp.
    Parke D; Ornston LN
    J Bacteriol; 1986 Jan; 165(1):288-92. PubMed ID: 3941043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotaxis of Bradyrhizobium japonicum to soybean exudates.
    Barbour WM; Hattermann DR; Stacey G
    Appl Environ Microbiol; 1991 Sep; 57(9):2635-9. PubMed ID: 1768137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential stimulation and inhibition of growth of Rhizobium trifolii strain T1 and other Rhizobium species by various carbon sources.
    Skotnicki ML; Rolfe BG
    Microbios; 1977; 20(79):15-28. PubMed ID: 617211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.
    Luu RA; Kootstra JD; Nesteryuk V; Brunton CN; Parales JV; Ditty JL; Parales RE
    Mol Microbiol; 2015 Apr; 96(1):134-47. PubMed ID: 25582673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii.
    Parke D; Rynne F; Glenn A
    J Bacteriol; 1991 Sep; 173(17):5546-50. PubMed ID: 1885531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation.
    Birkenhead K; Manian SS; O'Gara F
    J Bacteriol; 1988 Jan; 170(1):184-9. PubMed ID: 3422072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome aa3 gene regulation in members of the family Rhizobiaceae: comparison of copper and oxygen effects in Bradyrhizobium japonicum and Rhizobium tropici.
    Gabel C; Bittinger MA; Maier RJ
    Appl Environ Microbiol; 1994 Jan; 60(1):141-8. PubMed ID: 8117073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti.
    Robinson JB; Bauer WD
    J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Exopolysaccharide by Bradyrhizobium japonicum during Growth on Hydroaromatic Substrates.
    Tully RE
    Appl Environ Microbiol; 1988 Jun; 54(6):1624-6. PubMed ID: 16347670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli.
    Gao S; Romdhane SB; Beullens S; Kaever V; Lambrichts I; Fauvart M; Michiels J
    Appl Microbiol Biotechnol; 2014 May; 98(10):4589-602. PubMed ID: 24728599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-growing root nodule bacteria produce a novel polyamine, aminobutylhomospermidine.
    Fujihara S; Harada Y
    Biochem Biophys Res Commun; 1989 Dec; 165(2):659-66. PubMed ID: 2597153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A succinate transport mutant of Bradyrhizobium japonicum forms ineffective nodules on soybeans.
    el-Din AK
    Can J Microbiol; 1992 Mar; 38(3):230-4. PubMed ID: 1393826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nod factors of Rhizobium are a key to the legume door.
    Relić B; Perret X; Estrada-García MT; Kopcinska J; Golinowski W; Krishnan HB; Pueppke SG; Broughton WJ
    Mol Microbiol; 1994 Jul; 13(1):171-8. PubMed ID: 7984092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative properties of glutamine synthetases I and II in Rhizobium and Agrobacterium spp.
    Fuchs RL; Keister DL
    J Bacteriol; 1980 Nov; 144(2):641-8. PubMed ID: 6107288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siderophore and organic acid production in root nodule bacteria.
    Carson KC; Holliday S; Glenn AR; Dilworth MJ
    Arch Microbiol; 1992; 157(3):264-71. PubMed ID: 1387306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation.
    Delgado MJ; Bedmar EJ; Downie JA
    Adv Microb Physiol; 1998; 40():191-231. PubMed ID: 9889979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizobial lipo-oligosaccharide nodulation factors: multidimensional chromatographic analysis of symbiotic signals involved in the development of legume root nodules.
    Price NP; Carlson RW
    Glycobiology; 1995 Mar; 5(2):233-42. PubMed ID: 7780198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains.
    Parales RE
    Appl Environ Microbiol; 2004 Jan; 70(1):285-92. PubMed ID: 14711654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK.
    D'Argenio DA; Segura A; Coco WM; Bünz PV; Ornston LN
    J Bacteriol; 1999 Jun; 181(11):3505-15. PubMed ID: 10348864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.