BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 4019433)

  • 1. Subterminal hydroxylation of fatty acids by a cytochrome P-450-dependent enzyme system from a fungus, Fusarium oxysporum.
    Shoun H; Sudo Y; Beppu T
    J Biochem; 1985 Mar; 97(3):755-63. PubMed ID: 4019433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid hydroxylation in rat kidney cortex microsomes.
    Ellin A; Orrenius S
    Mol Cell Biochem; 1975 Aug; 8(2):69-79. PubMed ID: 241011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of fatty acids by kidney microsomes of musk shrew (Suncus murinus).
    Miura Y; Oda S
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Jan; 119(1):107-12. PubMed ID: 9530812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subterminal hydroxylation of lauric acid by microsomes from a marine fish.
    Lemaire P; Lafaurie M; Weissbart D; Durst F; Pflieger P; Mioskowski C; Salaün JP
    Lipids; 1992 Mar; 27(3):187-91. PubMed ID: 1522763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of lauric acid omega-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein.
    Chaurasia CS; Alterman MA; Lu P; Hanzlik RP
    Arch Biochem Biophys; 1995 Feb; 317(1):161-9. PubMed ID: 7872779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic properties of rabbit kidney fatty acid omega-hydroxylase cytochrome P-450ka2 (CYP4A7).
    Sawamura A; Kusunose E; Satouchi K; Kusunose M
    Biochim Biophys Acta; 1993 May; 1168(1):30-6. PubMed ID: 8504139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid hydroxylase of the fungus Fusarium oxysporum is possibly a fused protein of cytochrome P-450 and its reductase.
    Nakayama N; Shoun H
    Biochem Biophys Res Commun; 1994 Jul; 202(1):586-90. PubMed ID: 8037765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum.
    Nakayama N; Takemae A; Shoun H
    J Biochem; 1996 Mar; 119(3):435-40. PubMed ID: 8830036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regiospecific hydroxylation of lauric acid by rainbow trout (Oncorhynchus mykiss) cytochrome P450s.
    Buhler DR; Miranda CL; Deinzer ML; Griffin DA; Henderson MC
    Drug Metab Dispos; 1997 Oct; 25(10):1176-83. PubMed ID: 9321521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes.
    Powell PK; Wolf I; Lasker JM
    Arch Biochem Biophys; 1996 Nov; 335(1):219-26. PubMed ID: 8914854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human neutrophil leukotriene B4 omega-hydroxylase as a system involving a unique cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Sumimoto J; Takeshige K; Minakami S
    Eur J Biochem; 1988 Mar; 172(2):315-24. PubMed ID: 3127205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselectivity of a plant lauric acid omega hydroxylase. Omega hydroxylation of cis and trans unsaturated lauric acid analogs and epoxygenation of the terminal olefin by plant cytochrome P-450.
    Weissbart D; Salaün JP; Durst F; Pflieger P; Mioskowski C
    Biochim Biophys Acta; 1992 Mar; 1124(2):135-42. PubMed ID: 1543735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae.
    Durairaj P; Malla S; Nadarajan SP; Lee PG; Jung E; Park HH; Kim BG; Yun H
    Microb Cell Fact; 2015 Apr; 14():45. PubMed ID: 25880760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omega- and (omega-1)-hydroxylation of lauric acid and arachidonic acid by rat renal cytochrome P-450.
    Imaoka S; Tanaka S; Funae Y
    Biochem Int; 1989 Apr; 18(4):731-40. PubMed ID: 2504167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regiospecificity in the hydroxylation of lauric acid by rainbow trout hepatic cytochrome P450 isozymes.
    Miranda CL; Wang JL; Henderson MC; Williams DE; Buhler DR
    Biochem Biophys Res Commun; 1990 Sep; 171(2):537-42. PubMed ID: 2403346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions.
    Boddupalli SS; Pramanik BC; Slaughter CA; Estabrook RW; Peterson JA
    Arch Biochem Biophys; 1992 Jan; 292(1):20-8. PubMed ID: 1727637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1.
    Faulkner KM; Shet MS; Fisher CW; Estabrook RW
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7705-9. PubMed ID: 7644480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, sequencing, and cDNA-directed expression of the rat renal CYP4A2: arachidonic acid omega-hydroxylation and 11,12-epoxidation by CYP4A2 protein.
    Wang MH; Stec DE; Balazy M; Mastyugin V; Yang CS; Roman RJ; Schwartzman ML
    Arch Biochem Biophys; 1996 Dec; 336(2):240-50. PubMed ID: 8954571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.