These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4019526)

  • 1. A new method for finite element simulation of orthodontic appliance-teeth-periodontium-alveolus system.
    Miyakawa O; Shiokawa N; Matsuura T; Hanada K
    J Biomech; 1985; 18(4):277-84. PubMed ID: 4019526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The tension induced by orthodontic forces in the dentoperiodontal system studied by the finite element method].
    Tatarciuc MS; Ciobanu O; Panaite S; Neumann CP; Mârţu S; Aanicăi C
    Rev Med Chir Soc Med Nat Iasi; 1999; 103(3-4):202-5. PubMed ID: 10756953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element simulation of initial movement, orthodontic movement, and the centre of resistance of the maxillary teeth connected with an archwire.
    Kojima Y; Fukui H
    Eur J Orthod; 2014 Jun; 36(3):255-61. PubMed ID: 22051537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects.
    Tanne K; Yoshida S; Kawata T; Sasaki A; Knox J; Jones ML
    Br J Orthod; 1998 May; 25(2):109-15. PubMed ID: 9668993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and histologic observations on tooth movement during and after orthodontic treatment.
    Reitan K
    Am J Orthod; 1967 Oct; 53(10):721-45. PubMed ID: 5233926
    [No Abstract]   [Full Text] [Related]  

  • 6. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element.
    Cattaneo PM; Dalstra M; Melsen B
    Orthod Craniofac Res; 2009 May; 12(2):120-8. PubMed ID: 19419455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens.
    Cattaneo PM; Dalstra M; Melsen B
    Am J Orthod Dentofacial Orthop; 2008 May; 133(5):681-9. PubMed ID: 18456141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.
    Kojima Y; Kawamura J; Fukui H
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):501-8. PubMed ID: 22999674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.
    Papageorgiou SN; Keilig L; Hasan I; Jäger A; Bourauel C
    Eur J Orthod; 2016 Jun; 38(3):300-7. PubMed ID: 26174769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial stress induced in the periodontal tissue at the time of the application of various types of orthodontic force: three-dimensional analysis by means of the finite element method.
    Tanne K; Sakuda M
    J Osaka Univ Dent Sch; 1983 Dec; 23():143-71. PubMed ID: 6587040
    [No Abstract]   [Full Text] [Related]  

  • 11. A reassessment of force magnitude in orthodontics.
    Quinn RS; Yoshikawa DK
    Am J Orthod; 1985 Sep; 88(3):252-60. PubMed ID: 3862348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stresses induced by edgewise appliances in the periodontal ligament--a finite element study.
    McGuinness N; Wilson AN; Jones M; Middleton J; Robertson NR
    Angle Orthod; 1992; 62(1):15-22. PubMed ID: 1554158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical effects of corticotomy approaches on dentoalveolar structures during canine retraction: A 3-dimensional finite element analysis.
    Yang C; Wang C; Deng F; Fan Y
    Am J Orthod Dentofacial Orthop; 2015 Sep; 148(3):457-65. PubMed ID: 26321344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torque differences due to the material variation of the orthodontic appliance: a finite element study.
    Papageorgiou SN; Keilig L; Vandevska-Radunovic V; Eliades T; Bourauel C
    Prog Orthod; 2017 Dec; 18(1):6. PubMed ID: 28164256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The finite element method: a tool to study orthodontic tooth movement.
    Cattaneo PM; Dalstra M; Melsen B
    J Dent Res; 2005 May; 84(5):428-33. PubMed ID: 15840778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method.
    Kim T; Suh J; Kim N; Lee M
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):639-47. PubMed ID: 20451783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis.
    Sung SJ; Jang GW; Chun YS; Moon YS
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):648-57. PubMed ID: 20451784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of the effect of power arm locations on tooth movement in extraction space closure with miniscrew anchorage in customized lingual orthodontic treatment.
    Feng Y; Kong WD; Cen WJ; Zhou XZ; Zhang W; Li QT; Guo HY; Yu JW
    Am J Orthod Dentofacial Orthop; 2019 Aug; 156(2):210-219. PubMed ID: 31375231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical simulation of tooth movement produced by molar uprighting spring.
    Kojima Y; Mizuno T; Fukui H
    Am J Orthod Dentofacial Orthop; 2007 Nov; 132(5):630-8. PubMed ID: 18005837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthodontic forces generated by a simulated archwire appliance evaluated by the finite element method.
    Fotos PG; Spyrakos CC; Bernard DO
    Angle Orthod; 1990; 60(4):277-82. PubMed ID: 2256565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.