These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 4020437)

  • 21. Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: reading the sense of rotation in an amplitude-phase plane.
    Rose G; Heiligenberg W
    J Comp Physiol A; 1986 May; 158(5):613-24. PubMed ID: 3735159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe.
    Bratton B; Bastian J
    J Neurosci; 1990 Apr; 10(4):1241-53. PubMed ID: 2158528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voltage-gated Na+ channels enhance the temporal filtering properties of electrosensory neurons in the torus.
    Fortune ES; Rose GJ
    J Neurophysiol; 2003 Aug; 90(2):924-9. PubMed ID: 12750421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe.
    Bastian J
    J Neurosci; 1986 Feb; 6(2):553-62. PubMed ID: 3950710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of the electrosensory nervous system of Eigenmannia (gymnotiformes): II. The electrosensory lateral line lobe, midbrain, and cerebellum.
    Lannoo MJ; Vischer HA; Maler L
    J Comp Neurol; 1990 Apr; 294(1):37-58. PubMed ID: 2324333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish.
    Nelson ME; Xu Z; Payne JR
    J Comp Physiol A; 1997 Nov; 181(5):532-44. PubMed ID: 9373958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The torus semicircularis in a gekkonid lizard.
    Kennedy MC; Browner RH
    J Morphol; 1981 Sep; 169(3):259-274. PubMed ID: 30153716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Grant K; Meek J; Sugawara Y; Veron M; Denizot JP; Hafmans TG; Serrier J; Szabo T
    J Comp Neurol; 1996 Nov; 375(1):18-42. PubMed ID: 8913891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron.
    Turner RW; Maler L; Deerinck T; Levinson SR; Ellisman MH
    J Neurosci; 1994 Nov; 14(11 Pt 1):6453-71. PubMed ID: 7965050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dorsal lateral geniculate nucleus of Tupaia glis: a Golgi, Nissl and acetylcholinesterase study.
    Brauer K; Werner L; Winkelmann E; Lüth HJ
    J Hirnforsch; 1981; 22(1):59-74. PubMed ID: 7240727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences.
    Shumway CA
    J Neurosci; 1989 Dec; 9(12):4388-99. PubMed ID: 2593005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological studies of cutaneous inputs to dorsal horn laminae I-IV of adult chickens.
    Woodbury CJ
    J Neurophysiol; 1992 Feb; 67(2):241-54. PubMed ID: 1569460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The optic tectum of the gymnotiform electric fish, Eigenmannia: labeling of physiologically identified cells.
    Heiligenberg W; Rose GJ
    Neuroscience; 1987 Jul; 22(1):331-40. PubMed ID: 3627446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish.
    Bastian J; Courtright J
    J Comp Physiol A; 1991 Apr; 168(4):393-407. PubMed ID: 1865386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter.
    Keller CH
    J Comp Physiol A; 1988 Apr; 162(6):747-57. PubMed ID: 3397918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two modes of information processing in the electrosensory system of the paddlefish (Polyodon spathula).
    Pothmann L; Wilkens LA; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jan; 198(1):1-10. PubMed ID: 21960281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.