These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 4020838)
1. Substrate probes for the mechanism of aromatic hydroxylation catalyzed by cytochrome P-450: selectively deuterated analogues of warfarin. Bush ED; Trager WF J Med Chem; 1985 Aug; 28(8):992-6. PubMed ID: 4020838 [TBL] [Abstract][Full Text] [Related]
2. Stereoselective metabolism of conformational analogues of warfarin by beta-naphthoflavone-inducible cytochrome P-450. Heimark LD; Trager WF J Med Chem; 1985 Apr; 28(4):503-6. PubMed ID: 3981543 [TBL] [Abstract][Full Text] [Related]
3. Chemical synthesis, absolute configuration, and stereochemistry of formation of 10-hydroxywarfarin: a major oxidative metabolite of (+)-(R)-warfarin from hepatic microsomal preparations. Lawrence RF; Rettie AE; Eddy AC; Trager WF Chirality; 1990; 2(2):96-105. PubMed ID: 2400642 [TBL] [Abstract][Full Text] [Related]
4. Prochiral selectivity and intramolecular isotope effects in the cytochrome P-450 catalyzed omega-hydroxylation of cumene. Sugiyama K; Trager WF Biochemistry; 1986 Nov; 25(23):7336-43. PubMed ID: 3801417 [TBL] [Abstract][Full Text] [Related]
5. Substrate probe for the mechanism of aromatic hydroxylation catalyzed by cytochrome P450. Darbyshire JF; Iyer KR; Grogan J; Korzekwa KR; Trager WF Drug Metab Dispos; 1996 Sep; 24(9):1038-45. PubMed ID: 8886617 [TBL] [Abstract][Full Text] [Related]
6. Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Wienkers LC; Wurden CJ; Storch E; Kunze KL; Rettie AE; Trager WF Drug Metab Dispos; 1996 May; 24(5):610-4. PubMed ID: 8723744 [TBL] [Abstract][Full Text] [Related]
7. Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation. Korzekwa KR; Swinney DC; Trager WF Biochemistry; 1989 Nov; 28(23):9019-27. PubMed ID: 2605239 [TBL] [Abstract][Full Text] [Related]
8. Intramolecular isotope effects associated with meta-hydroxylation of biphenyl catalyzed by cytochrome P-450. Swinney DC; Howald WN; Trager WF Biochem Biophys Res Commun; 1984 Feb; 118(3):867-72. PubMed ID: 6704111 [TBL] [Abstract][Full Text] [Related]
9. Evidence against an abstraction or direct insertion mechanism for cytochrome P-450 catalysed meta hydroxylations. Bush ED; Trager WF Biochem Biophys Res Commun; 1982 Jan; 104(2):626-32. PubMed ID: 7073704 [No Abstract] [Full Text] [Related]
10. The rapid identification of a new metabolite of warfarin via a chemical ionization mass spectrometry ion doublet technique. Pohl LR; Nelson SD; Garland WA; Trager WF Biomed Mass Spectrom; 1975 Feb; 2(1):23-30. PubMed ID: 1131390 [TBL] [Abstract][Full Text] [Related]
11. Cumene hydroperoxide-supported microsomal hydroxylations of warfarin--a probe of cytochrome P-450 multiplicity and specificity. Fasco MJ; Piper LJ; Kaminsky LS Biochem Pharmacol; 1979; 28(1):97-103. PubMed ID: 31893 [No Abstract] [Full Text] [Related]
12. Comparisons of warfarin metabolism by liver microsomes of rats treated with a series of polybrominated biphenyl congeners and by the component-purified cytochrome P-450 isozymes. Kaminsky LS; Guengerich FP; Dannan GA; Aust SD Arch Biochem Biophys; 1983 Aug; 225(1):398-404. PubMed ID: 6311109 [TBL] [Abstract][Full Text] [Related]
13. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation. Wüst M; Croteau RB Biochemistry; 2002 Feb; 41(6):1820-7. PubMed ID: 11827526 [TBL] [Abstract][Full Text] [Related]
14. Cytochrome P450IIIA enzymes in rat liver microsomes: involvement in C3-hydroxylation of diazepam and nordazepam but not N-dealkylation of diazepam and temazepam. Reilly PE; Thompson DA; Mason SR; Hooper WD Mol Pharmacol; 1990 May; 37(5):767-74. PubMed ID: 1971091 [TBL] [Abstract][Full Text] [Related]
15. In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4'- and 10-hydroxywarfarin. Ngui JS; Chen Q; Shou M; Wang RW; Stearns RA; Baillie TA; Tang W Drug Metab Dispos; 2001 Jun; 29(6):877-86. PubMed ID: 11353757 [TBL] [Abstract][Full Text] [Related]
16. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Hermans JJ; Thijssen HH Br J Pharmacol; 1993 Sep; 110(1):482-90. PubMed ID: 8220911 [TBL] [Abstract][Full Text] [Related]
17. Microsomal hydroxylation of specifically deuterated monosubstituted benzenes. Evidence for direct aromatic hydroxylation. Hanzlik RP; Hogberg K; Judson CM Biochemistry; 1984 Jun; 23(13):3048-55. PubMed ID: 6466630 [TBL] [Abstract][Full Text] [Related]
18. Influence of substituents in fluorobenzene derivatives on the cytochrome P450-catalyzed hydroxylation at the adjacent ortho aromatic carbon center. Koerts J; Velraeds MM; Soffers AE; Vervoort J; Rietjens IM Chem Res Toxicol; 1997 Mar; 10(3):279-88. PubMed ID: 9084907 [TBL] [Abstract][Full Text] [Related]
19. Microbial models of mammalian metabolism: conversion of warfarin to 4'-hydroxywarfarin using Cunninghamella bainieri. Rizzo JD; Davis PJ J Pharm Sci; 1989 Mar; 78(3):183-9. PubMed ID: 2724074 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome P450-catalyzed hydroxylation of hydrocarbons: kinetic deuterium isotope effects for the hydroxylation of an ultrafast radical clock. Atkinson JK; Hollenberg PF; Ingold KU; Johnson CC; Le Tadic MH; Newcomb M; Putt DA Biochemistry; 1994 Sep; 33(35):10630-7. PubMed ID: 8075063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]