BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 4021733)

  • 1. Metabolism of S-adenosylmethionine in rat hepatocytes: transfer of methyl group from S-adenosylmethionine by methyltransferase reactions.
    Tsukada K; Abe T; Kuwahata T; Mitsui K
    Life Sci; 1985 Aug; 37(7):665-72. PubMed ID: 4021733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the activities of some methyltransferases in the livers and tumor cells from tumor-bearing mice.
    Yanokura M; Horii M; Tsukada K
    Life Sci; 1983 Jun; 32(25):2843-8. PubMed ID: 6855473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vitamin B12 deficiency on S-adenosylmethionine metabolism in rats.
    Doi T; Kawata T; Tadano N; Iijima T; Maekawa A
    J Nutr Sci Vitaminol (Tokyo); 1989 Feb; 35(1):1-9. PubMed ID: 2738712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine metabolism in mammals. Adaptation to methionine excess.
    Finkelstein JD; Martin JJ
    J Biol Chem; 1986 Feb; 261(4):1582-7. PubMed ID: 3080429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dietary methyl group deficiency on one-carbon metabolism in rats.
    Cook RJ; Horne DW; Wagner C
    J Nutr; 1989 Apr; 119(4):612-7. PubMed ID: 2703919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nitrous oxide-induced inactivation of cobalamin on methionine and S-adenosylmethionine metabolism in the rat.
    Lumb M; Sharer N; Deacon R; Jennings P; Purkiss P; Perry J; Chanarin I
    Biochim Biophys Acta; 1983 Apr; 756(3):354-9. PubMed ID: 6830860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased activities of S-adenosylmethionine synthetase isozymes in hereditary hepatitis in Long-Evans rats.
    Shimizu K; Abe M; Yokoyama S; Takahashi H; Sawada N; Mori M; Tsukada K
    Life Sci; 1990; 46(25):1837-42. PubMed ID: 2362543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of prolonged ethanol feeding on methionine metabolism in rat liver.
    Barak AJ; Beckenhauer HC; Tuma DJ; Badakhsh S
    Biochem Cell Biol; 1987 Mar; 65(3):230-3. PubMed ID: 3580171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative studies on the methionine synthesis in sheep and rat tissues.
    Xue GP; Snoswell AM
    Comp Biochem Physiol B; 1985; 80(3):489-94. PubMed ID: 4006442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hypoxia on hepatic DNA methylation and tRNA methyltransferase in rat: similarities to effects of methyl-deficient diets.
    Chawla RK; Watson WH; Jones DP
    J Cell Biochem; 1996 Apr; 61(1):72-80. PubMed ID: 8726357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of methionine-loading on methyl group synthesis and activation in rat brain and liver.
    Carl GF; Benesh FC; Hudson JL
    Biol Psychiatry; 1978 Dec; 13(6):661-9. PubMed ID: 737254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of alloxan on S-adenosylmethionine metabolism in the rat liver.
    Cabrero C; Merida I; Ortiz P; Varela I; Mato JM
    Biochem Pharmacol; 1986 Jul; 35(13):2261-4. PubMed ID: 3524574
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in the activities of S-adenosylmethionine synthetase isozymes from rat liver on ethionine administration.
    Abe T; Yamano H; Teraoka H; Tsukada K
    FEBS Lett; 1980 Nov; 121(1):29-32. PubMed ID: 7461117
    [No Abstract]   [Full Text] [Related]  

  • 14. Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Effect of age, sex and methionine administration on the metabolism of S-adenosylmethionine, S-adenosylhomocysteine and polyamines.
    Eloranta TO
    Biochem J; 1977 Sep; 166(3):521-9. PubMed ID: 597242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis.
    Duce AM; Ortíz P; Cabrero C; Mato JM
    Hepatology; 1988; 8(1):65-8. PubMed ID: 3338721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine-N methyltransferase expression in HepG2 cells is involved in methyl group homeostasis by regulating transmethylation kinetics and DNA methylation.
    Wang YC; Tang FY; Chen SY; Chen YM; Chiang EP
    J Nutr; 2011 May; 141(5):777-82. PubMed ID: 21411609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A substrate switch: a new mode of regulation in the methionine metabolic pathway.
    Martinov MV; Vitvitsky VM; Mosharov EV; Banerjee R; Ataullakhanov FI
    J Theor Biol; 2000 Jun; 204(4):521-32. PubMed ID: 10833353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinamide N-Methyltransferase Interacts with Enzymes of the Methionine Cycle and Regulates Methyl Donor Metabolism.
    Hong S; Zhai B; Pissios P
    Biochemistry; 2018 Oct; 57(40):5775-5779. PubMed ID: 30226369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The specificity of interaction between S-adenosyl-L-methionine and a nucleolar 2'-O-methyltransferase.
    Segal DM; Eichler DC
    Arch Biochem Biophys; 1989 Dec; 275(2):334-43. PubMed ID: 2596846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of S-adenosylmethionine in germinating yeast ascospores.
    Choih SJ; Ferro AJ; Shapiro SK
    J Bacteriol; 1977 Jul; 131(1):63-8. PubMed ID: 326770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.