These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 4022127)

  • 1. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibres.
    Higuchi H; Goldman YE
    Nature; 1991 Jul; 352(6333):352-4. PubMed ID: 1852212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid regeneration of the actin-myosin power stroke in contracting muscle.
    Lombardi V; Piazzesi G; Linari M
    Nature; 1992 Feb; 355(6361):638-41. PubMed ID: 1538750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function.
    Root DD; Reisler E
    Biophys J; 1992 Sep; 63(3):730-40. PubMed ID: 1420910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The myosin step size: measurement of the unit displacement per ATP hydrolyzed in an in vitro assay.
    Toyoshima YY; Kron SJ; Spudich JA
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7130-4. PubMed ID: 2144900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay.
    Harada Y; Sakurada K; Aoki T; Thomas DD; Yanagida T
    J Mol Biol; 1990 Nov; 216(1):49-68. PubMed ID: 2146398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative actions between myosin heads bring effective functions.
    Esaki S; Ishii Y; Nishikawa M; Yanagida T
    Biosystems; 2007 Apr; 88(3):293-300. PubMed ID: 17187925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loose coupling between chemical and mechanical reactions in actomyosin energy transduction.
    Yanagida T
    Adv Biophys; 1990; 26():75-95. PubMed ID: 2082730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle myosin II structure and function.
    Lutz GJ; Lieber RL
    Exerc Sport Sci Rev; 1999; 27():63-77. PubMed ID: 10791014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments.
    Craig R; Lehman W
    J Mol Biol; 2001 Aug; 311(5):1027-36. PubMed ID: 11531337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemomechanical coupling in actomyosin system: an approach by in vitro movement assay and kinetic analysis of ATP hydrolysis by shortening myofibrils.
    Yanagida T; Harada Y; Kodama T
    Adv Biophys; 1991; 27():237-57. PubMed ID: 1836709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unitary distance of actin-myosin sliding studied using an in vitro force-movement assay system combined with ATP iontophoresis.
    Oiwa K; Kawakami T; Sugi H
    J Biochem; 1993 Jul; 114(1):28-32. PubMed ID: 8407871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimum structural unit required for energy transduction in muscle.
    Yanagida T; Harada Y
    Adv Exp Med Biol; 1988; 226():277-87. PubMed ID: 3407516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin.
    Uyeda TQ; Kron SJ; Spudich JA
    J Mol Biol; 1990 Aug; 214(3):699-710. PubMed ID: 2143785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of mechanochemical coupling in systems containing actin, atp and non-aggregating active myosin derivatives.
    Oplatka A; Gadasi H; Tirosh R; Lamed Y; Muhlrad A; Liron N
    J Mechanochem Cell Motil; 1974 Mar; 2(4):295-306. PubMed ID: 4277009
    [No Abstract]   [Full Text] [Related]  

  • 17. Induced potential model of muscular contraction mechanism and myosin molecular structure.
    Mitsui T
    Adv Biophys; 1999; 36():107-58. PubMed ID: 10463074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.
    Fusi L; Percario V; Brunello E; Caremani M; Bianco P; Powers JD; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2017 Feb; 595(4):1127-1142. PubMed ID: 27763660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap.
    Saito K; Aoki T; Aoki T; Yanagida T
    Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physical model of ATP-induced actin-myosin movement in vitro.
    Tawada K; Sekimoto K
    Biophys J; 1991 Feb; 59(2):343-56. PubMed ID: 1826220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.