These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4022460)

  • 1. Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey.
    Sawaguchi T; Matsumura M
    Neurosci Res; 1985 Apr; 2(4):255-73. PubMed ID: 4022460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholamine sensitivities of motor cortical neurons of the monkey.
    Sawaguchi T; Matsumura M; Kubota K
    Neurosci Lett; 1986 May; 66(2):135-40. PubMed ID: 3725178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine sensitivities of neurons related to a visual reaction time task in the monkey prefrontal cortex.
    Sawaguchi T
    J Neurophysiol; 1987 Nov; 58(5):1100-22. PubMed ID: 3694246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex.
    Sawaguchi T; Matsumura M; Kubota K
    J Neurophysiol; 1990 Jun; 63(6):1385-400. PubMed ID: 2358882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of acetylcholine on neuronal activity in monkey orbitofrontal cortex during bar press feeding task.
    Aou S; Oomura Y; Nishino H
    Brain Res; 1983 Sep; 275(1):178-82. PubMed ID: 6626976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study.
    Sesack SR; Bunney BS
    J Pharmacol Exp Ther; 1989 Mar; 248(3):1323-33. PubMed ID: 2564893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noradrenaline and acetylcholine responsiveness of glucose-monitoring and glucose-insensitive neurons in the mediodorsal prefrontal cortex.
    Nagy B; Szabó I; Csetényi B; Hormay E; Papp S; Keresztes D; Karádi Z
    Brain Res; 2014 Jan; 1543():159-64. PubMed ID: 24252621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of neuronal activities by iontophoretically applied catecholamines and acetylcholine in the primate motor cortex during a visual reaction-time task.
    Matsumura M; Sawaguchi T; Kubota K
    Neurosci Res; 1990 Jun; 8(2):138-45. PubMed ID: 2170874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic modulation of cholinergic responses in rat medial prefrontal cortex: an electrophysiological study.
    Yang CR; Mogenson GJ
    Brain Res; 1990 Aug; 524(2):271-81. PubMed ID: 1981327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth distribution of neuronal activity related to a visual reaction time task in the monkey prefrontal cortex.
    Sawaguchi T; Matsumura M; Kubota K
    J Neurophysiol; 1989 Feb; 61(2):435-46. PubMed ID: 2918365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine modulates neuronal activities related to motor performance in the monkey prefrontal cortex.
    Sawaguchi T; Matsumura M; Kubota K
    Brain Res; 1986 Apr; 371(2):404-8. PubMed ID: 2870780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of desipramine on neuronal responses to dopamine, noradrenaline, 5-hydroxytryptamine and acetylcholine in the caudate nucleus of the rat.
    Bevan P; Bradshaw CM; Szabadi E
    Br J Pharmacol; 1975 Jul; 54(3):285-93. PubMed ID: 1164588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iontophoretic study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis of glutamate and acetylcholine effects on receptive-field properties.
    Lamour Y; Dutar P; Jobert A; Dykes RW
    J Neurophysiol; 1988 Aug; 60(2):725-50. PubMed ID: 2902201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory influence of the mesocortical dopaminergic neurons on their target cells: electrophysiological and pharmacological characterization.
    Godbout R; Mantz J; Pirot S; Glowinski J; Thierry AM
    J Pharmacol Exp Ther; 1991 Aug; 258(2):728-38. PubMed ID: 1865369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefrontal influences upon the midbrain: a possible route for pain modulation.
    Hardy SG; Haigler HJ
    Brain Res; 1985 Jul; 339(2):285-93. PubMed ID: 4027627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The responses of thalamic neurons to iontophoretically applied monoamines.
    Phillis JW; Tebĕcis AK
    J Physiol; 1967 Oct; 192(3):715-45. PubMed ID: 4293789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex.
    Henze DA; González-Burgos GR; Urban NN; Lewis DA; Barrionuevo G
    J Neurophysiol; 2000 Dec; 84(6):2799-809. PubMed ID: 11110810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex.
    Devoto P; Flore G; Pani L; Gessa GL
    Mol Psychiatry; 2001 Nov; 6(6):657-64. PubMed ID: 11673793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex.
    Sawaguchi T; Matsumura M; Kubota K
    J Neurophysiol; 1990 Jun; 63(6):1401-12. PubMed ID: 2358883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholamine and acetylcholine sensitivity of rat lateral hypothalamic neurons related to learning.
    Ono T; Nakamura K; Fukuda M; Kobayashi T
    J Neurophysiol; 1992 Feb; 67(2):265-79. PubMed ID: 1569461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.