These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 402290)

  • 1. Isoaccepting phenylalanine tRNAs from Bacillus subtilis as a function of growth conditions. Differences in the content of modified nucleosides.
    Arnold HH; Raettig R
    FEBS Lett; 1977 Feb; 73(2):210-4. PubMed ID: 402290
    [No Abstract]   [Full Text] [Related]  

  • 2. Relative incorporation of phenylalanine at different temperatures by cell-free systems from Bacillus licheniformis and Bacillus stearothermophilus.
    Stenesh J; Schechter N; Shen PY; Yang C
    Biochim Biophys Acta; 1971 Jan; 228(1):259-67. PubMed ID: 4993725
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of the tetrahydrofolate-dependent biosynthesis of ribothymidine in tRNAs of B. subtilis and M. lysodeikticus by trimethoprim.
    Arnold HH; Kersten H
    FEBS Lett; 1975 May; 53(2):258-61. PubMed ID: 806472
    [No Abstract]   [Full Text] [Related]  

  • 4. Modified nucleosides in undermethylated phenylalanine transfer RNA from Escherichia coli.
    Isham KR; Stulberg MP
    Biochim Biophys Acta; 1974 Mar; 340(2):177-82. PubMed ID: 4598974
    [No Abstract]   [Full Text] [Related]  

  • 5. Isolation of isoaccepting tRNAs.
    Sokolff L; Rappaport HP
    Arch Biochem Biophys; 1972 Dec; 153(2):788-96. PubMed ID: 4575441
    [No Abstract]   [Full Text] [Related]  

  • 6. 5-Methoxyuridine, a new modified constituent in tRNAs of Bacillaceae.
    Albani M; Schmidt W; Kersten H; Geibel K; Lüderwald I
    FEBS Lett; 1976 Nov; 70(1):37-42. PubMed ID: 825391
    [No Abstract]   [Full Text] [Related]  

  • 7. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis.
    Lazzarini RA
    Proc Natl Acad Sci U S A; 1966 Jul; 56(1):185-90. PubMed ID: 4961191
    [No Abstract]   [Full Text] [Related]  

  • 8. Purification and characterization of tRNAMet-f, tRNAPhe and tRNATyr2 from Baccillus subtilis.
    Raettig R; Schmidt W; Mahal G; Kersten H; Arnold HH
    Biochim Biophys Acta; 1976 Jun; 435(2):109-18. PubMed ID: 820377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography.
    Gehrke CW; Kuo KC
    J Chromatogr; 1989 Jun; 471():3-36. PubMed ID: 2670985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleoside changes in tRNAs from Bacillus subtilus treated with 5-fluorouracil.
    Kaiser II; Kladianos DM
    Biochim Biophys Acta; 1981 Jan; 652(1):218-22. PubMed ID: 6783092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis.
    Arnold HH; Schmidt W; Kersten H
    FEBS Lett; 1975 Mar; 52(1):62-5. PubMed ID: 164388
    [No Abstract]   [Full Text] [Related]  

  • 12. Post-transcriptional modification of tyrosine tRNA as a function of growth in Bacillus subtilis.
    Keith G; Rogg H; Dirheimer G; Menichi B; Heyham T
    FEBS Lett; 1976 Jan; 61(2):120-3. PubMed ID: 814021
    [No Abstract]   [Full Text] [Related]  

  • 13. Purification and thermal stability of several amino acid-specific tRNAs from an extreme thermophile, Thermus thermophilus HB8.
    Watanabe K; Oshima T; Iijima K; Yamaizumi Z; Nishimura S
    J Biochem; 1980 Jan; 87(1):1-13. PubMed ID: 6987208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain transfer RNA. II. Analysis of modified nucleosides.
    Chaudhary KD; Carrier-Malhotra L; Murthy MR
    Neurochem Res; 1982 Jan; 7(1):67-77. PubMed ID: 7070581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of a serine transfer RNA of Bacillus subtilis under two growth conditions.
    Doi RH; Kaneko I; Goehler B
    Proc Natl Acad Sci U S A; 1966 Nov; 56(5):1548-51. PubMed ID: 4961689
    [No Abstract]   [Full Text] [Related]  

  • 16. Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA.
    Schmidt W; Arnold HH; Kersten H
    Nucleic Acids Res; 1975 Jul; 2(7):1043-51. PubMed ID: 807911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in transfer ribonucleic acids of Bacillus subtilis during different growth phases.
    Singhal RP; Vold B
    Nucleic Acids Res; 1976 May; 3(5):1249-62. PubMed ID: 821040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of cytokinin-active nucleosides in isoaccepting transfer ribonucleic acids from Agrobacterium tumefaciens.
    Morris RO; Regier DA; Olson RM; Struxness LA; Armstrong DJ
    Biochemistry; 1981 Oct; 20(21):6012-7. PubMed ID: 7306490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate.
    Delk AS; Romeo JM; Nagle DP; Rabinowitz JC
    J Biol Chem; 1976 Dec; 251(23):7649-56. PubMed ID: 826533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base analysis of ribopolynucleotides by tritium incorporation following analytical polyacrylamide gel electrophoresis.
    Chia LL; Randerath K; Randerath E
    Anal Biochem; 1973 Sep; 55(1):102-13. PubMed ID: 4753141
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.