These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4023704)

  • 1. Picosecond time-resolved resonance Raman studies of hemoglobin: implications for reactivity.
    Findsen EW; Friedman JM; Ondrias MR; Simon SR
    Science; 1985 Aug; 229(4714):661-5. PubMed ID: 4023704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformational and dynamic basis for ligand binding reactivity in hemoglobin Ypsilanti (beta 99 asp-->Tyr): origin of the quaternary enhancement effect.
    Huang J; Juszczak LJ; Peterson ES; Shannon CF; Yang M; Huang S; Vidugiris GV; Friedman JM
    Biochemistry; 1999 Apr; 38(14):4514-25. PubMed ID: 10194373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics, and reactivity in hemoglobin.
    Friedman JM
    Science; 1985 Jun; 228(4705):1273-80. PubMed ID: 4001941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient Raman study of hemoglobin: structural dependence of the iron-histidine linkage.
    Friedman JM; Rousseau DL; Ondrias MR; Stepnoski RA
    Science; 1982 Dec; 218(4578):1244-6. PubMed ID: 7146910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study.
    Friedman JM; Scott TW; Stepnoski RA; Ikeda-Saito M; Yonetani T
    J Biol Chem; 1983 Sep; 258(17):10564-72. PubMed ID: 6885793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species.
    Franzen S; Bohn B; Poyart C; Martin JL
    Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized control of ligand binding in hemoglobin: effect of tertiary structure on picosecond geminate recombination.
    Friedman JM; Scott TW; Fisanick GJ; Simon SR; Findsen EW; Ondrias MR; Macdonald VW
    Science; 1985 Jul; 229(4709):187-90. PubMed ID: 4012316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy Mb at pH 3. Time-resolved resonance Raman study at cryogenic temperatures.
    Iben IE; Cowen BR; Sanches R; Friedman JM
    Biophys J; 1991 Apr; 59(4):908-19. PubMed ID: 2065191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and functional characterization of T state hemoglobin conformations encapsulated in silica gels.
    Samuni U; Dantsker D; Juszczak LJ; Bettati S; Ronda L; Mozzarelli A; Friedman JM
    Biochemistry; 2004 Nov; 43(43):13674-82. PubMed ID: 15504030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectra of photodissociated carbonmonoxy hemoglobin and deoxy hemoglobin at 10 K.
    Ondrias MR; Rousseau DL; Simon SR
    J Biol Chem; 1983 May; 258(9):5638-42. PubMed ID: 6853537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Fe(II)-N epsilon(His-F8) stretching frequencies between deoxyhemoglobins in the two alternative quaternary structures.
    Nagai K; Kitagawa T
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2033-7. PubMed ID: 6929536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and reactivity of HbXL99 alpha. A cross-linked hemoglobin derivative.
    Larsen RW; Chavez MD; Ondrias MR; Courtney SH; Friedman JM; Lin MJ; Hirsch RE
    J Biol Chem; 1990 Mar; 265(8):4449-54. PubMed ID: 2307673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple geminate ligand recombinations in human hemoglobin.
    Esquerra RM; Goldbeck RA; Reaney SH; Batchelder AM; Wen Y; Lewis JW; Kliger DS
    Biophys J; 2000 Jun; 78(6):3227-39. PubMed ID: 10827999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration.
    Gilch H; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1995 Jul; 69(1):214-27. PubMed ID: 7669899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quaternary structure and the geminate recombination of carp hemoglobin with methylisocyanide.
    Bandyopadhyay D; Walda KN; Magde D; Traylor TG; Sharma VS
    Biochem Biophys Res Commun; 1990 Aug; 171(1):306-12. PubMed ID: 2393395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: oxygen equilibrium curves and resonance Raman spectra.
    Ishimori K; Tsuneshige A; Imai K; Morishima I
    Biochemistry; 1989 Oct; 28(21):8603-9. PubMed ID: 2605210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.