These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4023953)

  • 1. The effect of long time delays in predator-prey systems.
    Nunney L
    Theor Popul Biol; 1985 Apr; 27(2):202-21. PubMed ID: 4023953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A predator prey model with age structure.
    Cushing JM; Saleem M
    J Math Biol; 1982; 14(2):231-50. PubMed ID: 7119585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delays in recruitment at different trophic levels: effects on stability.
    Hastings A
    J Math Biol; 1984; 21(1):35-44. PubMed ID: 6520547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predator prey interactions with time delays.
    Cushing JM
    J Math Biol; 1976 Nov; 3(3-4):369-80. PubMed ID: 1035612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator-prey models with delay and prey harvesting.
    Martin A; Ruan S
    J Math Biol; 2001 Sep; 43(3):247-67. PubMed ID: 11681528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.
    Wang X; Zou X
    Bull Math Biol; 2017 Jun; 79(6):1325-1359. PubMed ID: 28508296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersal delays, predator-prey stability, and the paradox of enrichment.
    Klepac P; Neubert MG; van den Driessche P
    Theor Popul Biol; 2007 Jun; 71(4):436-44. PubMed ID: 17433392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age structure in predator-prey systems: intraspecific carnivore interaction, passive diffusion, and the paradox of enrichment.
    Smith JL; Wollkind DJ
    J Math Biol; 1983; 17(3):275-88. PubMed ID: 6619662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components.
    Rao F; Castillo-Chavez C; Kang Y
    Math Biosci Eng; 2018 Dec; 15(6):1401-1423. PubMed ID: 30418791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stability of predator-prey systems subject to the Allee effects.
    Zhou SR; Liu YF; Wang G
    Theor Popul Biol; 2005 Feb; 67(1):23-31. PubMed ID: 15649521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic analysis of a fractional order delayed predator-prey system with harvesting.
    Song P; Zhao H; Zhang X
    Theory Biosci; 2016 Jun; 135(1-2):59-72. PubMed ID: 27026265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and analysis of a predator-prey model with disease in the prey.
    Xiao Y; Chen L
    Math Biosci; 2001 May; 171(1):59-82. PubMed ID: 11325384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models.
    Banerjee M; Takeuchi Y
    J Theor Biol; 2017 Jan; 412():154-171. PubMed ID: 27825813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encounters in predator-prey systems: a simple discrete model.
    Voit EO
    Biosystems; 1984; 17(1):57-63. PubMed ID: 6743794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The existence of stable equilibria in Volterra predator-prey systems represented by loop graphs.
    Solimano F
    Bull Math Biol; 1985; 47(4):489-94. PubMed ID: 4084687
    [No Abstract]   [Full Text] [Related]  

  • 16. Harvesting in discrete-time predator-prey systems.
    Basson M; Fogarty MJ
    Math Biosci; 1997 Apr; 141(1):41-74. PubMed ID: 9077079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.
    Beretta E; Capasso V; Rinaldi F
    J Math Biol; 1988; 26(6):661-88. PubMed ID: 3230365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A note on exact solutions of two prey-predator equations.
    Burnside RR
    Bull Math Biol; 1982; 44(6):893-7. PubMed ID: 7159791
    [No Abstract]   [Full Text] [Related]  

  • 19. Persistence and global stability in a predator-prey model consisting of three prey genotypes with fertility differences.
    So JW; Freedman HI
    Bull Math Biol; 1986; 48(5-6):469-84. PubMed ID: 3580635
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of refuges on predator-prey interactions: a reconsideration.
    McNair JN
    Theor Popul Biol; 1986 Feb; 29(1):38-63. PubMed ID: 3961711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.