These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4025021)

  • 1. Sub-pial infiltration of blood products following experimental subarachnoid haemorrhage.
    Cardoso ER; Peterson EW; Hendelman W
    Acta Neurochir (Wien); 1985; 76(3-4):140-4. PubMed ID: 4025021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat.
    Jackowski A; Crockard A; Burnstock G; Russell RR; Kristek F
    J Cereb Blood Flow Metab; 1990 Nov; 10(6):835-49. PubMed ID: 2211877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical relationships of the pia mater to cerebral blood vessels in man.
    Hutchings M; Weller RO
    J Neurosurg; 1986 Sep; 65(3):316-25. PubMed ID: 3734882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage.
    Sun BL; Zheng CB; Yang MF; Yuan H; Zhang SM; Wang LX
    Cell Mol Neurobiol; 2009 Mar; 29(2):235-41. PubMed ID: 18821009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-brain barrier changes after experimental subarachnoid haemorrhage.
    Trojanowski T
    Acta Neurochir (Wien); 1982; 60(1-2):45-54. PubMed ID: 7058699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constriction and dysfunction of pial arterioles after regional hemorrhage in the subarachnoid space.
    Wang CX; Lin YX; Xie GB; Shi JX; Zhou ML
    Brain Res; 2015 Mar; 1601():85-91. PubMed ID: 25598204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood-brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model.
    Dóczi T; Joó F; Adám G; Bozóky B; Szerdahelyi P
    Neurosurgery; 1986 Jun; 18(6):733-9. PubMed ID: 3736802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracisternal increase of superoxide anion production in a canine subarachnoid hemorrhage model.
    Mori T; Nagata K; Town T; Tan J; Matsui T; Asano T
    Stroke; 2001 Mar; 32(3):636-42. PubMed ID: 11239179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Etiology of the disruption in blood-arterial wall barrier following experimental subarachnoid hemorrhage.
    Nakagomi T; Kassell NF; Sasaki T; Lehman RM; Fujiwara S
    Surg Neurol; 1990 Jul; 34(1):16-26. PubMed ID: 2360159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood-brain barrier disturbance following subarachnoid hemorrhage in rabbits.
    Johshita H; Kassell NF; Sasaki T
    Stroke; 1990 Jul; 21(7):1051-8. PubMed ID: 2368106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional cerebral blood flow in the acute stage of experimentally induced subarachnoid hemorrhage.
    Umansky F; Kaspi T; Shalit MN
    J Neurosurg; 1983 Feb; 58(2):210-6. PubMed ID: 6848678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The blood-brain barrier following experimental subarachnoid hemorrhage. Part 1: Response to insult caused by arterial hypertension.
    Peterson EW; Cardoso ER
    J Neurosurg; 1983 Mar; 58(3):338-44. PubMed ID: 6827318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakdown of the meningeal barrier surrounding the intraorbital optic nerve after experimental subarachnoid hemorrhage.
    Brinker T; Lüdemann W; von Rautenfeld DB; Brassel F; Becker H; Samii M
    Am J Ophthalmol; 1997 Sep; 124(3):373-80. PubMed ID: 9439363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of HMGB1 in Pial Arteriole Dilating Reactivity following Subarachnoid Hemorrhage in Rats.
    Xu H; Changyaleket B; Valyi-Nagy T; Dull RO; Pelligrino DA; Schwartz DE; Chong ZZ
    J Vasc Res; 2016; 53(5-6):349-357. PubMed ID: 27997923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protective effect of experimental subarachnoid haemorrhage on sodium dehydrocholate-induced blood-brain barrier disruption.
    Davis RP; Zappulla RA; Spigelman MK; Feuer EJ; Malis LI; Holland JF
    Acta Neurochir (Wien); 1986; 83(3-4):138-43. PubMed ID: 3812038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part I: Experimental subarachnoid haemorrhage in cat and its pathophysiological effects. Methods of regional cerebral blood flow measurement and evaluation of microcirculation.
    Trojanowski T
    Acta Neurochir (Wien); 1984; 72(1-2):79-94. PubMed ID: 6741649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional cerebral metabolic activity in the rat following experimental subarachnoid hemorrhage.
    Solomon RA; Lovitz RL; Hegemann MT; Schuessler GB; Young WL; Chien S
    J Cereb Blood Flow Metab; 1987 Apr; 7(2):193-8. PubMed ID: 3104355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage.
    Wan H; Brathwaite S; Ai J; Hynynen K; Macdonald RL
    J Cereb Blood Flow Metab; 2021 Aug; 41(8):1842-1857. PubMed ID: 33444089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part II: Regional cerebral blood flow and cerebral microcirculation after experimental subarachnoid haemorrhage.
    Trojanowski T
    Acta Neurochir (Wien); 1984; 72(3-4):241-55. PubMed ID: 6475579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of the cortical subarachnoid hemorrhage on cerebral glucose metabolism].
    Ito C; Yamaura A; Ozawa Y; Murai H; Wagai N; Nakamura T; Makino H
    No To Shinkei; 1991 Jan; 43(1):30-6. PubMed ID: 2054220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.