These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 4025573)
1. Oscillatory temperature response to constant power applied to canine muscle. Roemer RB; Oleson JR; Cetas TC Am J Physiol; 1985 Aug; 249(2 Pt 2):R153-8. PubMed ID: 4025573 [TBL] [Abstract][Full Text] [Related]
2. Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared. Roemer RB; Fletcher AM; Cetas TC Int J Radiat Oncol Biol Phys; 1985 Aug; 11(8):1539-50. PubMed ID: 4019278 [TBL] [Abstract][Full Text] [Related]
3. Thermoregulation in the canine prostate during transurethral microwave hyperthermia, Part I: Temperature response. Xu LX; Zhu L; Holmes KR Int J Hyperthermia; 1998; 14(1):29-37. PubMed ID: 9483444 [TBL] [Abstract][Full Text] [Related]
4. The distribution of power and heat produced by interstitial microwave antenna arrays: I. Comparative phantom and canine studies. Denman DL; Elson HR; Lewis GC; Breneman JC; Clausen CL; Dine J; Aron BS Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):127-37. PubMed ID: 3335448 [TBL] [Abstract][Full Text] [Related]
5. Blood perfusion measurements in the canine prostate during transurethral hyperthermia. Xu LX; Zhu L; Holmes KR Ann N Y Acad Sci; 1998 Sep; 858():21-9. PubMed ID: 9917803 [TBL] [Abstract][Full Text] [Related]
6. Thermoregulation in the canine prostate during transurethral microwave hyperthermia, Part II: Blood flow response. Xu LX; Zhu L; Holmes KR Int J Hyperthermia; 1998; 14(1):65-73. PubMed ID: 9483447 [TBL] [Abstract][Full Text] [Related]
7. COMPARISON OF DEEP HEATING BY MICROWAVES AT FREQUENCIES 2456 AND 900 MEGACYCLES. LEHMANN JF; JOHNSTON VC; MCMILLAN JA; SILVERMAN DR; BRUNNER GD; RATHBUN LA Arch Phys Med Rehabil; 1965 Apr; 46():307-14. PubMed ID: 14280220 [No Abstract] [Full Text] [Related]
8. Local hyperthermia induced by focussed and overlapping ultrasonic fields--an in vivo demonstration. Hynynen K; Watmough DJ; Mallard JR; Fuller M Ultrasound Med Biol; 1983; 9(6):621-7. PubMed ID: 6670147 [TBL] [Abstract][Full Text] [Related]
9. Predictions of blood flow from thermal clearance during regional hyperthermia. Milligan AJ; Conran PB; Ropar MA; McCulloch HA; Ahuja RK; Dobelbower RR Int J Radiat Oncol Biol Phys; 1983 Sep; 9(9):1335-43. PubMed ID: 6885546 [TBL] [Abstract][Full Text] [Related]
10. Improved preferential tumor hyperthermia with regional heating and systemic blood cooling: a balanced heat transfer method. Oleson JR; Babbs CF; Parks LC Radiat Res; 1984 Mar; 97(3):488-98. PubMed ID: 6729025 [TBL] [Abstract][Full Text] [Related]
11. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator. Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011 [TBL] [Abstract][Full Text] [Related]
12. Changes in muscle temperature induced by 434 MHz microwave hyperthermia. Ichinoseki-Sekine N; Naito H; Saga N; Ogura Y; Shiraishi M; Giombini A; Giovannini V; Katamoto S Br J Sports Med; 2007 Jul; 41(7):425-9. PubMed ID: 17261552 [TBL] [Abstract][Full Text] [Related]
13. Effect of 5-hydroxytryptamine on tissue blood flow and microwave heating of rat tumors. Shrivastav S; Joines WT; Jirtle RL Cancer Res; 1985 Jul; 45(7):3203-8. PubMed ID: 4005853 [TBL] [Abstract][Full Text] [Related]
14. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-body SAR, maximum temperature, and CEM43 °C due to RF irradiation in an MR body coil of birdcage type at 123 MHz. Nadobny J; Klopfleisch R; Brinker G; Stoltenburg-Didinger G Int J Hyperthermia; 2015 Jun; 31(4):409-20. PubMed ID: 25716768 [TBL] [Abstract][Full Text] [Related]
15. [Temperature distribution in normal and tumor tissues of animals subjected to local SHF-hyperthermia]. Rudakov NP; Maligonov PA Eksp Onkol; 1988; 10(5):69-70. PubMed ID: 3208696 [TBL] [Abstract][Full Text] [Related]
16. Optimization in hyperthermia treatment planning: the impact of tissue perfusion uncertainty. de Greef M; Kok HP; Correia D; Bel A; Crezee J Med Phys; 2010 Sep; 37(9):4540-50. PubMed ID: 20964171 [TBL] [Abstract][Full Text] [Related]
17. Transient finite element analysis of thermal methods used to estimate SAR and blood flow in homogeneously and nonhomogeneously perfused tumour models. Wong TZ; Mechling JA; Jones EL; Strohbehn JW Int J Hyperthermia; 1988; 4(6):571-92. PubMed ID: 3171254 [TBL] [Abstract][Full Text] [Related]
18. Serious toxicity associated with annular microwave array induction of whole-body hyperthermia in normal dogs. Thrall DE; Prescott DM; Samulski TV; Dewhirst MW; Cline JM; Lee J; Page RL; Oleson JR Int J Hyperthermia; 1992; 8(1):23-32. PubMed ID: 1545161 [TBL] [Abstract][Full Text] [Related]
19. Local muscle blood flow and temperature responses to 915MHz diathermy as simultaneously measured and numerically predicted. Sekins KM; Lehmann JF; Esselman P; Dundore D; Emery AF; deLateur BJ; Nelp WB Arch Phys Med Rehabil; 1984 Jan; 65(1):1-7. PubMed ID: 6691788 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous measurements of local tissue temperature and blood perfusion rate in the canine prostate during radio frequency thermal therapy. Zhu L; Pang L; Xu LX Biomech Model Mechanobiol; 2005 Aug; 4(1):1-9. PubMed ID: 15940507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]