These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4025578)

  • 1. Calcium regulation in blowflies: absence of a role for midgut.
    Taylor CW
    Am J Physiol; 1985 Aug; 249(2 Pt 2):R209-13. PubMed ID: 4025578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcellular calcium transport by the midgut of the blowfly, Calliphora vicina.
    Taylor CW
    Cell Calcium; 1984 Aug; 5(4):377-90. PubMed ID: 6435879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The removal of sulphate by the excretory apparatus of the blowfly Calliphora vomitoria.
    Knowles G
    J Exp Biol; 1975 Aug; 63(1):237-48. PubMed ID: 1159364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium transport by the gut and Malpighian tubules of Chironomus riparius.
    Leonard EM; Pierce LM; Gillis PL; Wood CM; O'Donnell MJ
    Aquat Toxicol; 2009 May; 92(3):179-86. PubMed ID: 19251326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blowflies Calliphora vicina and Lucilia sericata as passive vectors of Mycobacterium avium subsp. avium, M. a. paratuberculosis and M. a. hominissuis.
    Fischer OA; Matlova L; Dvorska L; Svastova P; Bartl J; Weston RT; Pavlik I
    Med Vet Entomol; 2004 Jun; 18(2):116-22. PubMed ID: 15189236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and excretion of morphine by Calliphora stygia, an Australian blow fly species of forensic importance.
    Parry S; Linton SM; Francis PS; O'Donnell MJ; Toop T
    J Insect Physiol; 2011 Jan; 57(1):62-73. PubMed ID: 20888829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal absorption of cholesterol, transport in the haemolymph, and incorporation into the fat body and Malpighian tubules of the larval dragonfly Aeshna cyanea.
    Komnick H; Giesa U
    Comp Biochem Physiol Comp Physiol; 1994 Mar; 107(3):553-7. PubMed ID: 7909737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active ammonia absorption in the midgut of the Tobacco hornworm Manduca sexta L.: transport studies and mRNA expression analysis of a Rhesus-like ammonia transporter.
    Weihrauch D
    Insect Biochem Mol Biol; 2006 Oct; 36(10):808-21. PubMed ID: 17027847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium homeostasis in larval and adult Drosophila melanogaster.
    Dube KA; McDonald DG; O'Donnell MJ
    Arch Insect Biochem Physiol; 2000 May; 44(1):27-39. PubMed ID: 10790183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibroblast growth factor-23 negates 1,25(OH)2D3-induced intestinal calcium transport by reducing the transcellular and paracellular calcium fluxes.
    Khuituan P; Wongdee K; Jantarajit W; Suntornsaratoon P; Krishnamra N; Charoenphandhu N
    Arch Biochem Biophys; 2013 Aug; 536(1):46-52. PubMed ID: 23747333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and functional aspects of intestinal calcium absorption.
    Bronner F
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):47-52. PubMed ID: 14598385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passage of solutes through walls of Malpighian tubules of Rhodnius by paracellular and transcellular routes.
    O'Donnell MJ; Maddrell SH; Gardiner BO
    Am J Physiol; 1984 May; 246(5 Pt 2):R759-69. PubMed ID: 6426328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis.
    Yi SX; Lee RE
    J Exp Biol; 2005 May; 208(Pt 10):1895-904. PubMed ID: 15879070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal absorption and renal reabsorption of calcium throughout postnatal development.
    Beggs MR; Alexander RT
    Exp Biol Med (Maywood); 2017 Apr; 242(8):840-849. PubMed ID: 28346014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developmental, molecular, and transport biology of Malpighian tubules.
    Beyenbach KW; Skaer H; Dow JA
    Annu Rev Entomol; 2010; 55():351-74. PubMed ID: 19961332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal calcium transport in the spontaneously hypertensive rat.
    Young EW; Drüeke T; McCarron DA
    Miner Electrolyte Metab; 1990; 16(2-3):154-8. PubMed ID: 2250621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of intestinal calcium absorption by luminal calcium content: role of intestinal alkaline phosphatase.
    Brun LR; Brance ML; Lombarte M; Lupo M; Di Loreto VE; Rigalli A
    Mol Nutr Food Res; 2014 Jul; 58(7):1546-51. PubMed ID: 24753180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ability of the blowflies Calliphora vomitoria (Linnaeus), Calliphora vicina (Rob-Desvoidy) and Lucilia sericata (Meigen) (Diptera: Calliphoridae) and the muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) (Diptera: Muscidae) to colonise buried remains.
    Gunn A; Bird J
    Forensic Sci Int; 2011 Apr; 207(1-3):198-204. PubMed ID: 21071161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicular calcium transport in chick intestine.
    Nemere I
    J Nutr; 1992 Mar; 122(3 Suppl):657-61. PubMed ID: 1542028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excretion of ouabain by Malpighian tubules of Oncopeltus fasciatus.
    Meredith J; Moore L; Scudder GG
    Am J Physiol; 1984 May; 246(5 Pt 2):R705-15. PubMed ID: 6720994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.